Maternal environmental enrichment protects neonatal brains from hypoxic-ischemic challenge by mitigating brain energetic dysfunction and modulating glial cell responses.

Exp Neurol

Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. Electronic address:

Published: April 2024

There is evidence that maternal milieu and changes in environmental factors during the prenatal period may exert a lasting impact on the brain health of the newborn, even in case of neonatal brain hypoxia-ischemia (HI). The present study aimed to investigate the effects of maternal environmental enrichment (EE) on HI-induced energetic and metabolic failure, along with subsequent neural cell responses in the early postnatal period. Male Wistar pups born to dams exposed to maternal EE or standard conditions (SC) were randomly divided into Sham-SC, HI-SC, Sham-EE, and HI-EE groups. Neonatal HI was induced on postnatal day (PND) 3. The NaK-ATPase activity, mitochondrial function and neuroinflammatory related-proteins were assessed at 24 h and 48 h after HI. MicroPET-FDG scans were used to measure glucose uptake at three time points: 24 h post-HI, PND18, and PND24. Moreover, neuronal preservation and glial cell responses were evaluated at PND18. After HI, animals exposed to maternal EE showed an increase in Na,K-ATPase activity, preservation of mitochondrial potential/mass ratio, and a reduction in mitochondrial swelling. Glucose uptake was preserved in HI-EE animals from PND18 onwards. Maternal EE attenuated HI-induced cell degeneration, white matter injury, and reduced astrocyte immunofluorescence. Moreover, the HI-EE group exhibited elevated levels of IL-10 and a reduction in Iba-1 positive cells. Data suggested that the regulation of AKT/ERK signaling pathways could be involved in the effects of maternal EE. This study evidenced that antenatal environmental stimuli could promote bioenergetic and neural resilience in the offspring against early HI damage, supporting the translational value of pregnancy-focused environmental treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2024.114713DOI Listing

Publication Analysis

Top Keywords

cell responses
12
maternal environmental
8
environmental enrichment
8
glial cell
8
effects maternal
8
exposed maternal
8
nak-atpase activity
8
glucose uptake
8
maternal
7
enrichment protects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!