This study addresses the challenging task of quantitatively investigating drug release from PLGA microspheres after in vivo administration. The objective is to employ Förster resonance energy transfer (FRET) to visualize drug-encapsulated microspheres in both in vitro and in vivo settings. The primary goal is to establish a quantitative correlation between FRET fluorescence changes and microsphere drug release. The study selects drugs with diverse structures and lipid solubility to explore release mechanisms, using PLGA as the matrix material. Clozapine and risperidone serve as model drugs. FRET molecules, Cy5 and Cy5.5, along with Cy7 derivatives, create FRET donor-acceptor pairs. In vitro results show that FRET fluorescence changes align closely with microsphere drug release, particularly for the Cy5.5-Cy7 pair. In vivo experiments involve subcutaneous administration of microspheres to rats, tracking FRET fluorescence changes while collecting blood samples. Pharmacokinetic studies on clozapine and risperidone reveal in vivo absorption fractions using the Loo-Riegelman method. Correlating FRET and in vivo absorption data establishes an in vitro-in vivo relationship (IVIVR). The study demonstrates that FRET-based fluorescence changes quantitatively link to microsphere drug release, offering an innovative method for visualizing and monitoring release in both in vitro and in vivo settings, potentially advancing clinical applications of such formulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2024.123885 | DOI Listing |
Infection
January 2025
Department of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Parkallee 35, Borstel, Germany.
Purpose: Deciding whether to provide preventive treatment to contacts of individuals with multidrug-resistant (MDR) tuberculosis is complex.
Methods: We present the diagnostic pathways, clinical course and outcome of tuberculosis treatment in eight siblings from a single family. Tuberculosis disease was diagnosed by Mycobacterium tuberculosis culture and molecular detection of M.
Chemistry
January 2025
University of Cambridge, Department of Chemistry, Lensfield Road, CB2 1EW, Cambridge, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
The ability to release a molecule from a larger construct in a controlled manner is of great importance to produce effective prodrugs, antibody-drug conjugates, and chemical probes. Amides are ubiquitous functional groups and yet methods to utilise them as molecular release handles are seldom reported. This concept article highlights the advances made in amide release strategies and how these approaches have been utilised.
View Article and Find Full Text PDFChemMedChem
January 2025
UMR-CNRS 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers, groupe « Systèmes Moléculaires Programmés », Faculté des Sciences Fondamentales et Appliquées, 4 rue Michel Brunet, TSA 51106, 86073, Poitiers, FRANCE.
The development of novel therapeutic strategies enabling the selective destruction of tumors while sparing healthy tissues is of great interest to improve the efficacy of cancer chemotherapy. In this context, we designed a β-glucuronidase-responsive albumin-binding prodrug programmed to release a potent Isocombretastatin A-4 analog within the tumor microenvironment. When injected at a non-toxic dose in mice bearing orthotopic triple-negative mammary tumors, this prodrug produced a significant anticancer activity, therefore offering a valuable alternative to the systemic administration of the parent drug.
View Article and Find Full Text PDFDrug Dev Ind Pharm
January 2025
Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India.
Objective: The present study aims to develop and evaluate the voriconazole-loaded thermoresponsive hydrogel using tools.
Methods: Poloxamer 407 and PEG 400 were selected as the components from studies for thermoresponsive hydrogel of voriconazole. The cohesive energy density (CED) and solubility parameters (SP) were calculated using Biovia Material Studio 2022 software to predict the polymer-polymer miscibility and drug-polymer miscibility.
Mol Pharm
January 2025
Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
Tyrosine kinase inhibitors have been employed for the treatment of lung cancer, owing to their role in regulating irregulated pathways or mutated genes. Bosutinib, a nonreceptor tyrosine kinase, has been recently investigated for lung cancer treatment. Bosutinib can also be used with paclitaxel as a combinatorial approach to receive a synergistic effect for the effective management of lung cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!