Different concentrations of betaxolol switch cell fate between necroptosis, apoptosis, and senescence in human corneal stromal cells.

Chem Biol Interact

Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong Province, PR China. Electronic address:

Published: March 2024

Betaxolol is commonly used to manage glaucoma in clinical practice. However, its long-term use may damage the cornea. Thus, the cytotoxicity and mechanisms of betaxolol in human corneal stromal cells (HCSCs) warrant further study. In this study, we used in vitro HCSCs and in vivo rabbit corneal models to investigate betaxolol cytotoxic effects and mechanism of action. At near-clinical concentrations (0.28% and 0.14%), betaxolol inhibited caspase-8 activity, activated receptor-interacting protein kinase (RIPK)1, RIPK3, and mixed-spectrum kinase-like domain (MLKL), and phosphorylated MLKL to induce necroptosis in HCSCs. Similarly, moderate concentrations of betaxolol (0.07%-0.0175%) activated caspase-8 to trigger the exogenous apoptotic pathway. Through the intrinsic apoptotic pathway, betaxolol upregulated the expression of Bcl-2 family apoptotic proteins Bax and Bad and downregulated that of anti-apoptotic proteins Bcl-2 and Bcl-xL. This subsequently disrupted the mitochondrial membrane potential and cytoplasmic transfer of cytochrome c and apoptosis-inducing factor, activated caspase-9, and induced apoptosis in HCSCs. Furthermore, continuous treatment with low betaxolol concentrations (0.00875%) for three generations of HCSCs prevented apoptosis by promoting the expression of Bcl-xL and suppressing that of Bax. However, its toxic effects initiated cellular senescence by increasing reactive oxygen species, leading to the disruption of energy metabolism and DNA damage. Finally, clinical concentrations of betaxolol had a pro-apoptotic effect on rabbit corneal stromal cells in vivo. These results suggest that betaxolol induces cytotoxicity in a concentration-dependent manner in HCSCs, and that caspase-8 and Bcl-2 family proteins may be critical switches in the conversion of different HCSC death mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2024.110898DOI Listing

Publication Analysis

Top Keywords

concentrations betaxolol
12
corneal stromal
12
stromal cells
12
betaxolol
9
human corneal
8
rabbit corneal
8
apoptotic pathway
8
bcl-2 family
8
hcscs
6
concentrations
5

Similar Publications

Different concentrations of betaxolol switch cell fate between necroptosis, apoptosis, and senescence in human corneal stromal cells.

Chem Biol Interact

March 2024

Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong Province, PR China. Electronic address:

Betaxolol is commonly used to manage glaucoma in clinical practice. However, its long-term use may damage the cornea. Thus, the cytotoxicity and mechanisms of betaxolol in human corneal stromal cells (HCSCs) warrant further study.

View Article and Find Full Text PDF

With significant human and economic losses, increasing bacterial resistance is a serious global threat to human life. Due to their high efficacy, broad spectrum, and cost-effectiveness, beta-lactams are widely used in the clinical management of bacterial infection. The emergence and wide spread of New Delhi metallo-β-lactamase (NDM-1), which can effectively inactivate β-lactams, has posed a challenge in the design of effective new antimicrobial treatments.

View Article and Find Full Text PDF

The current study introduces microextraction by packed sorbent (MEPS) to extract three beta-blocker drugs (propranolol, atenolol, and betaxolol) from biological samples. The separation and detection of the drugs were performed by high performance liquid chromatography followed by UV detection. A green approach was applied for synthesizing chitosan@MOF-199 bio-composite, which was packed into the initial part of a metal spinal (22 gage).

View Article and Find Full Text PDF

Uveal melanoma (UM) is the most common primary cancer of the eye in adults. A new systemic therapy is needed to reduce the high metastasis and mortality rate. As β-blockers are known to have anti-tumor effects on various cancer entities, this study focuses on investigating the effect of β1-selective blockers atenolol, celiprolol, bisoprolol, metoprolol, esmolol, betaxolol, and in particular, nebivolol on UM.

View Article and Find Full Text PDF

Critical Evaluation of Multifunctional Betaxolol Hydrochloride Nanoformulations for Effective Sustained Intraocular Pressure Reduction.

Int J Nanomedicine

December 2022

Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People's Republic of China.

Introduction: Glaucoma is a chronic disease that requires long-term adherence to treatment. Topical application of conventional eye drops results in substantial drug loss due to rapid tear turnover, with poor drug bioavailability being a major challenge for efficient glaucoma treatment. We aimed to prepare the anti-glaucoma drug betaxolol hydrochloride (BH) as a novel nano-delivery system that prolonged the retention time at the ocular surface and improved bioavailability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!