Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ultrasound information entropy is a flexible approach for analyzing ultrasound backscattering. Shannon entropy imaging based on probability distribution histograms (PDHs) has been implemented as a promising method for tissue characterization and diagnosis. However, the bin number affects the stability of entropy estimation. In this study, we introduced the k-nearest neighbor (KNN) algorithm to estimate entropy values and proposed ultrasound KNN entropy imaging. The proposed KNN estimator leveraged the Euclidean distance between data samples, rather than the histogram bins by conventional PDH estimators. We also proposed cumulative relative entropy (CRE) imaging to analyze time-series radiofrequency signals and applied it to monitor thermal lesions induced by microwave ablation (MWA). Computer simulation phantom experiments were conducted to validate and compare the performance of the proposed KNN entropy imaging, the conventional PDH entropy imaging, and Nakagami-m parametric imaging in detecting the variations of scatterer densities and visualizing inclusions. Clinical data of breast lesions were analyzed, and porcine liver MWA experiments ex vivo were conducted to validate the performance of KNN entropy imaging in classifying benign and malignant breast tumors and monitoring thermal lesions, respectively. Compared with PDH, the entropy estimation based on KNN was less affected by the tuning parameters. KNN entropy imaging was more sensitive to changes in scatterer densities and performed better visualizable capability than typical Shannon entropy (TSE) and Nakagami-m parametric imaging. Among different imaging methods, KNN-based Shannon entropy (KSE) imaging achieved the higher accuracy in classification of benign and malignant breast tumors and KNN-based CRE imaging had larger lesion-to-normal contrast when monitoring the ablated areas during MWA at different powers and treatment durations. Ultrasound KNN entropy imaging is a potential quantitative ultrasound approach for tissue characterization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultras.2024.107256 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!