Novel two-dimensional MXene with unique optical and electrical properties has become a new focus in the field of sensing. In particular, their metallic conductivity, good biocompatibility and high anchoring ability to biomaterials make them attractive candidates. Despite such remarkable properties, there are certain limitations, such as low oxidative stability. MXene-Metal interactions are an effective strategy to maintain the long-term stability of MXene, while also improving the electrochemical activity and optical properties. Herein, a series of MXene/Ag nanocomposites including TiC/Ag, NbC/Ag and VC/Ag were designed based on the surface chemistry characteristics of MXene, where MXene served as the substrate for in-situ growth of silver nanoparticles via self-reduction of Ag(NH). The results showed that VC MXene has the strongest self-reducing ability due to its multiple variable valence states, larger interlayer space and more reactive groups. Moreover, VC/Ag exhibited unexpected oxygen reduction reaction catalytic activity and photothermal performance. In view of which, an electrochemiluminescence-photothermal (ECL-photothermal) immunosensor was developed using VC/Ag as ECL anchor and photothermal reagent for ultrasensitive detection of Lipolysis stimulated lipoprotein receptor. This work not only provides a simple and effective synthesis method of MXene supported metal nanocomposites, but also provides more inspirations for exploring the efficient biosensing strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.02.023DOI Listing

Publication Analysis

Top Keywords

mxene
6
self-reduced mxene-metal
4
mxene-metal interaction
4
interaction electrochemiluminescence
4
electrochemiluminescence support
4
support synergistic
4
synergistic electrocatalytic
4
electrocatalytic photothermal
4
photothermal effects
4
effects bimodal
4

Similar Publications

Regulation of T Cell Glycosylation by MXene/β-TCP Nanocomposite for Enhanced Mandibular Bone Regeneration.

Adv Healthc Mater

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.

View Article and Find Full Text PDF

Porous Materials for Early Diagnosis of Neurodegenerative Diseases.

Adv Healthc Mater

January 2025

Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, India.

Neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease, present formidable challenges in modern medicine due to their complex pathologies and the absence of curative treatments. Despite advances in symptomatic management, early diagnosis remains essential for mitigating disease progression and improving patient outcomes. Traditional diagnostic methods, such as MRI, PET, and cerebrospinal fluid biomarker analysis, are often inadequate for the early detection of these diseases.

View Article and Find Full Text PDF

Solar-driven interfacial evaporation is one of the most attractive approaches to addressing the global freshwater shortage. However, achieving an integrated high evaporation rate, salt harvesting, and multifunctionality in evaporator is still a crucial challenge. Here, a novel composite membrane with biomimetic micro-nanostructured superhydrophobic surface is designed via ultrafast laser etching technology.

View Article and Find Full Text PDF

The effects of termination functional groups of the TiCT MXene membrane on the structural and dynamics properties of nearby water molecules and foulants are investigated through molecular dynamics simulations. The simulation results show that a much denser water layer can be formed at the vicinity of hydroxyl (OH) termination than that near fluorine (F) or oxygen (O) termination. Particular focus is given to the molecular binding properties of β-d-mannuronic acid (M) and α-l-guluronic acid (G) alginate monomers on the MXene membrane surface with different termination groups.

View Article and Find Full Text PDF

Probing the synergistic effects of amino compounds in mitigating oxidation in 2D TiCT MXene nanosheets in aqueous environments.

Chem Sci

December 2024

State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology Beijing 100029 China

The shelf life of 2D MXenes in functional devices and colloidal dispersions is compromised due to oxidation in the aqueous system. Herein, a systematic investigation was carried out to explore the potential of various amino compounds as antioxidants for TiCT MXenes. A range of basic, acidic, and neutral amino acids were examined for their effectiveness, where certain antioxidants failed to protect MXenes from oxidation, while others accelerated their decomposition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!