Background: CineECG offers a visual representation of the location and direction of the average ventricular electrical activity throughout a single cardiac cycle, based on the 12‑lead ECG. Currently, CineECG has not been used to visualize ventricular activation patterns during ischemia.
Purpose: To determine the changes in ventricular activity during acute ischemia with the use of CineECG, and relating this to changes in the ECG.
Methods: Continuous ECG's during percutaneous coronary intervention with prolonged balloon inflation from the STAFF III database were analyzed with CineECG at baseline and every 10 s throughout the first 150 s of balloon inflation. The CineECG direction was determined for the initial QRS-complex, terminal QRS-complex, ST-segment and T-wave. Changes in the CineECG were quantified by calculating the Δangle between the direction at baseline and the direction at every 10 s of inflation. Additionally, the root mean square amplitude (rmsA) of the ST-segment was computed.
Results: 94 patients were included. At start inflation, the median Δangle was 14.7° [7.5-33.4], 21.8° [11.4-34.2], 20.6° [8.0-43.9], and 23.5° [11.8-48.0] for the initial QRS-complex, terminal QRS-complex, ST-segment and T-wave, respectively. Meanwhile, the median rmsA increased from 0.039 mV [0.027-0.058] at baseline to 0.045 mV [0.033-0.075] at start of inflation.
Conclusions: CineECG was able to detect immediate changes in ventricular electrical activity during induced ischemia, while changes in the ST-segment of the ECG were still subtle. Therefore, CineECG might support the early detection of acute ischemia, even before distinct ECG changes become visible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jelectrocard.2024.01.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!