AI Article Synopsis

  • The study aimed to find the rate of lower extremity bone stress injuries (BSIs) in U.S. Air Force Special Warfare trainees during their first 120 days of training and the factors linked to these injuries.
  • A total of 2,290 trainees were analyzed, with 124 suffering from BSIs, resulting in an incidence of 5.41%.
  • Key factors found to increase the risk of BSIs included lower sit-up scores, no prior high-impact sports involvement, and a history of previous lower extremity musculoskeletal injuries.

Article Abstract

Objectives: To determine (1) the incidence rate of lower extremity (LE) bone stress injuries (BSIs) in United States Air Force Special Warfare (AFSPECWAR) trainees during the first 120 days of training, and (2) factors associated with sustaining a LE BSI.

Design: Retrospective cohort study.

Methods: AFSPECWAR Airmen (n = 2,290, mean age = 23.7 ± 3.6 years) entering an intensive 8-week preparatory course "SW-Prep" between October 2017 and May 2021. We compared anthropometric measurements, previous musculoskeletal injury (MSKI), fitness measures, and prior high-impact sports participation in those that did and did not suffer a BSI during the 120-day observation period using independent t-tests and chi-square tests. A multivariable binary logistic regression was used to determine factors associated with suffering a BSI.

Results: A total of 124 AFSPECWAR trainees suffered a BSI during the surveillance period, yielding an incidence proportion of 5.41% and an incidence rate of 1.4 BSIs per 100 person-months. The multivariate logistic regression revealed that lower 2-minute sit-up scores, no prior history of participation in a high-impact high-school sport, and a history of prior LE MSKI were associated with suffering a BSI. A receiver operator characteristic curve analysis yielded an area under the curve (AUC) of 0.727.

Conclusion: BSI incidence proportion for our sample was similar to those seen in other military settings. Military trainees without a history of high-impact sports participation who achieve lower scores on sit-ups tests and have a history of LE MSKI have a higher risk for developing a LE BSI during the first 120 days of AFSPECWAR training.

Download full-text PDF

Source
http://dx.doi.org/10.1093/milmed/usae017DOI Listing

Publication Analysis

Top Keywords

bone stress
8
stress injuries
8
united states
8
states air
8
air force
8
force special
8
special warfare
8
incidence rate
8
afspecwar trainees
8
factors associated
8

Similar Publications

The infiltration and excessive polarization of M1 macrophages contribute to the induction and persistence of low-grade inflammation in joint-related degenerative diseases such as osteoarthritis (OA). The lipid metabolism dysregulation promotes M1 macrophage polarization by coordinating the compensatory pathways of the inflammatory and oxidative stress responses. Here, a self-assembling, licofelone-loaded nanoparticle (termed LCF-CSBN), comprising chondroitin sulfate and bilirubin joined by an ethylenediamine linker, is developed to selectively reprogram lipid metabolism in macrophage activation.

View Article and Find Full Text PDF

The progression of periodontal disease (PD) involves the action of oxidative stress mediators. Antioxidant agents may potentially attenuate the development of this condition. Thus, we aimed to evaluate the effects of different doses of humic acid (HA), extracted from biomass vermicomposting, on redox status and parameters related to PD progression in rats.

View Article and Find Full Text PDF

In the context of bone fractures, the influence of the mechanical environment on the healing outcome is widely accepted, while its influence at the cellular level is still poorly understood. This study explores the influence of mechanical load on naïve mesenchymal stem cell (MSC) differentiation, focusing on hypertrophic chondrocyte differentiation. Unlike primary bone healing, which involves the direct differentiation of MSCs into bone-forming cells, endochondral ossification uses an intermediate cartilage template that remodels into bone.

View Article and Find Full Text PDF

Self-Cascade of ROS/Glucose-Scavenging Immunomodulatory Hydrogels for Programmed Therapeutics of Infected Diabetic Ulcers via Nrf2/NF-κB Pathway.

Small

January 2025

Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.

Diabetic ulcers (DUs) are characterized by a microenvironment with high oxidative stress, high blood glucose levels, and recalcitrant bacterial infections. This microenvironment is accompanied by long-term suppression of endogenous antioxidant systems, which makes their clinical management extremely challenging. To address this issue, a hybridized novel gold-palladium (AuPd) nanoshell of the injectable/injectable hydrogel system UiO/AuPd/BNN6/PEG@Gel (UAPsBP@Gel) is developed.

View Article and Find Full Text PDF

Cell-laden, scaffold-based tissue engineering methods have been successfully utilized for the treatment of bone fractures. In such methods, the rate of scaffold biodegradation, transport of nutrients, and removal of cell metabolic wastes are critical fluid-dynamics factors, affecting tissue regeneration. Therefore, there is a critical need to identify the underlying material transport mechanisms associated with stem cell-driven, scaffold-based bone tissue regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!