The creation of a new metal-organic framework (MOF) with a hollow hierarchical porous structure has gained significant attention in the realm of enzyme immobilization. The present work employed a novel, facile, and effective combinatorial technique to synthesize modified MOF (N-PVP/HZIF-8) with a hierarchically porous core-shell structure, allowing for the preservation of the structural integrity of the encapsulated enzyme molecules. Scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, confocal laser scanning microscopy, and other characterization tools were used to fully explore the changes of morphological structure and surface properties in different stages of the preparation of immobilization enzyme CRL-N-PVP/HZIF-8, thus showing the superiority of N-PVP/HZIF-8 as an enzyme immobilization platform and the logic of the immobilization process on the carrier. Additionally, the maximum enzyme loading was 216.3 mg mL, the relative activity of CRL-N-PVP/HZIF-8 increased by 15 times compared with the CRL@ZIF-8 immobilized , and exhibited quite good thermal, chemical, and operational stability. With a maximal conversion of 88.8%, CRL-N-PVP/HZIF-8 demonstrated good catalytic performance in the biosynthesis of phytosterol esters as a proof of concept. It is anticipated that this work will offer fresh concepts from several perspectives for the creation of MOF-based immobilized enzymes for biotechnological uses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c16971 | DOI Listing |
Small Methods
December 2024
Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials, College of Science, Nanchang Institute of Technology, Nanchang, 330099, P. R. China.
Constructing a hollow structure inside zeolite is very helpful for improving its performance. Unlike the conventional alkaline etching technique usually operated at high temperature (typically 170 °C) and high pressure (autogenerated in autoclave), here, it is discovered that zeolite MFI nano-box can be achieved under mild etching conditions of atmospheric pressure and low temperature of 80 °C, making it very attractive for energy conservation and practical applications. A hollow-structure formation mechanism of protection-dissolution etching is demonstrated by characterizing MFI crystals obtained under different etching time, temperature, and etchant concentration.
View Article and Find Full Text PDFNanomicro Lett
December 2024
Department of Chemistry and Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, People's Republic of China.
Chloroform and other volatile organic pollutants have garnered widespread attention from the public and researchers, because of their potential harm to the respiratory system, nervous system, skin, and eyes. However, research on chloroform vapor sensing is still in its early stages, primarily due to the lack of specific recognition motif. Here we report a mesoporous photonic crystal sensor incorporating carbon dots-based nanoreceptor (HMSS@CDs-PCs) for enhanced chloroform sensing.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
The Affiliated Guangdong Second Provincial General Hospital of Jinan University, PR China. Electronic address:
Alpha-fetoprotein (AFP), serves as a reliable and vital biomarker for precise diagnosis and effective monitoring of hepatocellular carcinoma, requires precise detection. Herein, a sandwich-structured electrochemical immunosensor was crafted, employing three-dimensional layered porous carbon modified with gold nanoparticles (Au NPs) as the substrate and Au NPs/CuS as the labeling compound for accurate and sensitive detection of AFP. Due to the effective coordination between the 3D carbon network, Au NPs, and hollow CuS nanocubes, the sandwich-structured electrochemical immunosensor was able to produce three distinct response signals via various detection techniques, demonstrating a broad linear range (0.
View Article and Find Full Text PDFInorg Chem
December 2024
Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India.
Design of hierarchical hollow nanoheterostructure materials through interfacial and defect engineering is an innovative approach for achieving optimal charge separation dynamics and photon harvesting efficiency. Herein, we have described a facile technique to fabricate hollow MOF-derived C, N-doped-CoO (C, N-CoO) dodecahedral particles enwrapped with MgInS nanosheets for enhanced N reduction performance. ZIF-67 was initially used as a sacrificial template to prepare hollow C, N-CoO using a carbonization route followed by low-temperature calcination treatment.
View Article and Find Full Text PDFNanoscale
December 2024
Key Laboratory of Advanced Energy Storage and Conversion of Wenzhou, Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
Lead oxides (PbO, 1 ≤ ≤ 2) are promising high-capacity and low-cost anodes for lithium ion batteries (LIBs). However, the huge lithiation-induced volume expansion of conventional large-sized PbO particles leads to severe electrode pulverization with poor cycling stability. Herein, a rare mixed-valence PbO with a unique hierarchical architecture of nanoparticle-assembled interconnected hollow spheres (denoted PbO NAHSs) is crafted by introducing polyvinylpyrrolidone (PVP) into the solution of generating β-PbO microspheres (MSs), which is exploited for the first time as a potential advanced anode material for LIBs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!