Carbon Source in Tertiary Denitrification Regulates Dissolved Organic Nitrogen in Wastewater Effluent.

Environ Sci Technol

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China.

Published: March 2024

With global eutrophication and increasingly stringent nitrogen discharge restrictions, dissolved organic nitrogen (DON) holds considerable potential to upgrade advanced wastewater denitrification because of its large contribution to low-nitrogen effluents and stronger stimulation effect for algae. Here, we show that DON from the postdenitrification systems dominates effluent eutrophication potential under different carbon sources. Methanol resulted in significantly lower DON concentrations (0.84 ± 0.03 mg/L) compared with the total nitrogen removal-preferred acetate (1.11 ± 0.02 mg/L) ( < 0.05, ANOVA). With our well-developed mathematical model ( = 0.867-0.958), produced DON instead of shared (persist in both influent and effluent) and/or removed DON was identified as the key component for effluent DON variation (Pearson = 0.992, < 0.01). The partial least-squares path modeling analysis showed that it is the microbial community ( = 0.947, < 0.01) rather than the predicted metabolic functions ( = 0.040, > 0.1) that affected produced DON. Carbon sources rebuild the microorganism-DON interaction by affecting the structure of microbial communities with different abilities to generate and recapture produced DON to finally regulate effluent DON. This study revalues the importance of carbon source selection and overturns the current rationality of pursuing only the total nitrogen removal efficiency by emphasizing DON.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.3c06554DOI Listing

Publication Analysis

Top Keywords

produced don
12
don
10
carbon source
8
dissolved organic
8
organic nitrogen
8
carbon sources
8
total nitrogen
8
effluent don
8
nitrogen
5
effluent
5

Similar Publications

Background: Advances in digital healthcare and health information provide benefits to the public. However, lack of digital skills together with access, confidence, trust and motivation issues present seemingly insurmountable barriers for many. Such digital health exclusion exacerbates existing health inequalities experienced by older people, people with less income, less education or who don't have English as a first language.

View Article and Find Full Text PDF

Innovative Infrared Spectroscopic Technologies for the Prediction of Deoxynivalenol in Wheat.

ACS Food Sci Technol

January 2025

Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, Ulm 89075, Germany.

Mycotoxin contamination in cereals is a global food safety concern. One of the most common mycotoxins in grains is deoxynivalenol (DON), a secondary metabolite produced by the fungi and . Exposure to DON can lead to adverse health effects in both humans and animals including vomiting, dizziness, and fever.

View Article and Find Full Text PDF

Alpha Atlas: Mapping global production of α-emitting radionuclides for targeted alpha therapy.

Nucl Med Biol

December 2024

Life Sciences Division, TRIUMF, BC V6T 2A3 Vancouver, British Columbia, Canada; Department of Chemistry, University of British Columbia, V6T 1Z1 Vancouver, British Columbia, Canada.

Targeted Alpha Therapy has shown great promise in cancer treatment, sparking significant interest over recent decades. However, its broad adoption has been impeded by the scarcity of alpha-emitters and the complexities related to their use. The availability of these radionuclides is often constrained by the intricate production processes and purification, as well as regulatory and logistical challenges.

View Article and Find Full Text PDF

One of the main difficulties in nanotechnology is the development of an environmentally friendly, successful method of producing nanoparticles from biological sources. Silver-doped zinc oxide nanoparticles (Ag-ZnO NPs), with antibacterial and antioxidant properties, were produced using Adiantum venustum extract as a green technique. Fresh A.

View Article and Find Full Text PDF

Contamination of wheat by the mycotoxin Deoxynivalenol (DON), produced by Fusarium fungi, poses significant challenges to the quality of crop yield and food safety. Visible and near-infrared (vis-NIR) spectroscopy has emerged as a promising, non-destructive, and efficient tool for detecting mycotoxins in cereal crops and foods. This study aims to utilize vis-NIR spectroscopy, coupled with a feature selection technique and machine learning modelling, to predict and classify DON contamination in wheat kernels and flour.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!