Study Design: Human Cadaveric Study.
Objective: This study aims to explore the feasibility of using preoperative magnetic resonance imaging (MRI), zero-time-echo (ZTE) and spoiled gradient echo (SPGR), as source data for robotic-assisted spine surgery and assess the accuracy of pedicle screws.
Methods: Zero-time-echo and SPGR MRI scans were conducted on a human cadaver. These images were manually post-processed, producing a computed tomography (CT)-like contrast. The Mazor X robot was used for lumbar pedicle screw-place navigating of MRI. The cadaver underwent a postoperative CT scan to determine the actual position of the navigated screws.
Results: Ten lumbar pedicle screws were robotically navigated of MRI (4 ZTE; 6 SPGR). All MR-navigated screws were graded A on the Gertzbein-Robbins scale. Comparing preoperative robotic planning to postoperative CT scan trajectories: The screws showed a median deviation of overall 0.25 mm (0.0; 1.3), in the axial plane 0.27 mm (0.0; 1.3), and in the sagittal plane 0.24 mm (0.0; 0.7).
Conclusion: This study demonstrates the first successful registration of MRI sequences, ZTE and SPGR, in robotic spine surgery here used for intraoperative navigation of lumbar pedicle screws achieving sufficient accuracy, showcasing potential progress toward radiation-free spine surgery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571642 | PMC |
http://dx.doi.org/10.1177/21925682241232328 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!