The study of nicotine addiction mechanism is of great significance in both nicotine withdrawal and brain science. The detection of addiction-related brain connectivity using functional magnetic resonance imaging (fMRI) is a critical step in study of this mechanism. However, it is challenging to accurately estimate addiction-related brain connectivity due to the low-signal-to-noise ratio of fMRI and the issue of small sample size. In this work, a prior-embedding graph generative adversarial network (PG-GAN) is proposed to capture addiction-related brain connectivity accurately. By designing a dual-generator-based scheme, the addiction-related connectivity generator is employed to learn the feature map of addiction connection, while the reconstruction generator is used for sample reconstruction. Moreover, a bidirectional mapping mechanism is designed to maintain the consistency of sample distribution in the latent space so that addiction-related brain connectivity can be estimated more accurately. The proposed model utilizes prior knowledge embeddings to reduce the search space so that the model can better understand the latent distribution for the issue of small sample size. Experimental results demonstrate the effectiveness of the proposed PG-GAN.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2024.3353549DOI Listing

Publication Analysis

Top Keywords

addiction-related brain
20
brain connectivity
20
prior-embedding graph
8
graph generative
8
generative adversarial
8
issue small
8
small sample
8
sample size
8
brain
6
connectivity
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!