Wings of Morph aega butterflies are natural surfaces that exhibit anisotropic liquid wettability. The direction-dependent arrangement of the wing scales creates orientation-turnable microstructures with two distinct contact modes for liquid droplets. Enabled by recent developments in additive manufacturing, such natural surface designs coupled with hydrophobicity play a crucial role in applications such as self-cleaning, anti-icing, and fluidic manipulation. However, the interplay among resolution, architecture, and performance of bioinspired structures is barely achieved. Herein, inspired by the wing scales of the Morpho aega butterfly, full-scale synthetic surfaces with anisotropic wettability fabricated by two-photon polymerization are reported. The quality of the artificial butterfly scale is improved by optimizing the laser scanning strategy and the objective lens movement path. The corresponding contact angles of water on the fabricated architecture with various design parameters are measured, and the anisotropic fluidic wettability is investigated. Results demonstrate that tuning the geometrical parameters and spatial arrangement of the artificial wing scales enables anisotropic behaviors of the droplet's motion. The measured results also indicate a reverse phenomenon of the fabricated surfaces in contrast to their natural counterparts, possibly attributed to the significant difference in equilibrium wettability between the fabricated microstructures and the natural Morpho aega surface. These findings are utilized to design next-generation fluid-controllable interfaces for manipulating liquid mobility on synthetic surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c14765 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
École polytechnique fédérale de Lausanne, School of Engineering, Institute of Mechanical Engineering, Unsteady Flow Diagnostics Laboratory, Lausanne 1015, Switzerland.
Airborne insects generate a leading edge vortex when they flap their wings. This coherent vortex is a low-pressure region that enhances the lift of flapping wings compared to fixed wings. Insect wings are thin membranes strengthened by a system of veins that does not allow large wing deformations.
View Article and Find Full Text PDFAnnu Rev Entomol
January 2025
Department of Biology and Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico.
Novel traits in the order Lepidoptera include prolegs in the abdomen of larvae, scales, and eyespot and band color patterns in the wings of adults. We review recent work that investigates the developmental origin and diversification of these four traits from a gene-regulatory network (GRN) perspective. While prolegs and eyespots appear to derive from distinct ancestral GRNs co-opted to novel body regions, scales derive from in situ modifications of a sensory bristle GRN.
View Article and Find Full Text PDFIndian Dermatol Online J
November 2024
Department of Dermatology, Venereology, and Leprosy, Gandhi Medical College, Secundarabad, Telangana, India.
Background: Diaper dermatoses broadly refer to skin disorders that occur in the diaper area. Dermoscopy is a non-invasive diagnostic tool that magnifies subsurface structures of the skin that are invisible to the unaided eye.
Aim: To identify and describe the dermoscopic features of dermatoses in the diaper area.
Bioinspir Biomim
January 2025
Shaanxi Aerospace Propulsion Research Institute Co., Ltd., No. 996, Tiangu 7th Road, Xi'an, 710072, CHINA.
Bird-like flapping-wing aerial vehicles (BFAVs) represent a significant advancement in the application of bird biology to aircraft design, with scaling analysis serving as an effective tool for identifying this design process. From the perspective of aviation designers, this paper systematically organizes the scaling laws of birds that are closely related to the design of BFAVs. An intriguing topic further explored is the comparison between birds and BFAVs from the standpoint of scaling, along with an examination of the differences in relevant design parameters.
View Article and Find Full Text PDFEcol Evol
January 2025
Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agronomy Mendel University in Brno Brno Czech Republic.
This study evaluates the response of ground beetle (Coleoptera: Carabidae) assemblage to forest management practices by integrating species composition, body traits, wing morphology and developmental instability. Traditional approaches that rely on averaged identity-based descriptors often overlook phenotypic plasticity and functional trait variability, potentially masking species-specific responses to environmental changes. To address this, we applied a three-layered analytical approach to address this gap, utilising ground beetle occurrence and morphological trait data from Podyjí National Park, Czech Republic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!