Cell's shape is dependent on the cytoskeleton mechanical properties. Hybrid models were developed that combine the discrete structure for the cytoskeleton and continuum parts for other cell organelles. Tensegrity-based structures that consist of tensile and compression elements are useful models to understand the cytoskeleton mechanical behavior. In this study, we are looking to examine the reaction of the cell to a variety of substrate stiffnesses and explain the relationship between cell behavior and substrate mechanical properties. However, which tensegrity structure is appropriate for modeling a living cell? Is the structure's complexity play a major role? We used two spherical tensegrities with different complexities to assess the impact of the structure on the cell's mechanical response versus substrate's stiffness. Six- and twelve-strut tensegrities together with membrane, cytoplasm, nucleoskeleton, and nucleus envelope were assembled in Abaqus package to create a hybrid cell model. A compressive load was applied to the cell model and the reaction forces versus deflection curves were analyzed for number of substrate stiffness values. By analyzing the difference due to two different tensegrities it became clear that the lower density structure is a better choice for modeling stiffer cells. It was also found that the six-strut tensegrity is sensitive to higher range of substrate stiffness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10439-024-03447-7 | DOI Listing |
Sci Rep
January 2025
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA.
Many aquatic organisms utilize suction-based organs to adhere to diverse substrates in unpredictable environments. For multiple fish species, these adhesive discs include a softer disc margin consisting of surface structures called papillae, which stabilize and seal on variable substrates. The size, arrangement, and density of these papillae are quite diverse among different species, generating complex disc patterns produced by these structures.
View Article and Find Full Text PDFAcc Mater Res
December 2024
The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States.
As a ubiquitous feature of the biological world, gradation, in either composition or structure, is essential to many functions and processes. Taking protein gradation as an example, it plays a pivotal role in the development and evolution of human bodies, including stimulation and direction of the outgrowth of peripheral nerves in a developing fetus. It is also critically involved in wound healing by attracting and guiding immune cells to the site of injury or infection.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
Proc Natl Acad Sci U S A
January 2025
Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel.
Biomineralization is the utilization of different minerals by a vast array of organisms to form hard tissues and shape them in various forms. Within this diversity, a common feature of all mineralized tissues is their high stiffness, implying that mechanosensing could be commonly used in biomineralization. Yet, the role of mechanosensing in biomineralization is far from clear.
View Article and Find Full Text PDFFEBS Open Bio
December 2024
Center for Drug Research, Ludwig-Maximilians-University Munich, Germany.
MST2 (STK3) is a major upstream kinase in the Hippo signalling pathway, an evolutionary conserved pathway in regulation of organ size, self-renewal and tissue homeostasis. Its downstream effectors are the transcriptional regulators YAP and TAZ. This pathway is regulated by a variety of factors, such as substrate stiffness or cell-cell contacts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!