AI Article Synopsis

  • The study focuses on the protein Canoe and its role in maintaining strong connections between adherens junctions and the actomyosin cytoskeleton, which is essential for cell shape changes during morphogenesis without damaging tissues.
  • It investigates the functionality of Canoe's largest domain, the Dilute domain, using various scientific methods, including structural predictions and mutant analysis.
  • Findings indicate that while mutants lacking the Dilute domain (CnoΔDIL) can survive and reproduce, they still show defects in eye development, demonstrating the critical role of junction-cytoskeletal connections in cellular movements and the evolutionary preservation of protein structures.

Article Abstract

Robust linkage between adherens junctions and the actomyosin cytoskeleton allows cells to change shape and move during morphogenesis without tearing tissues apart. The Drosophila multidomain protein Canoe and its mammalian homolog afadin are crucial for this, as in their absence many events of morphogenesis fail. To define the mechanism of action for Canoe, we are taking it apart. Canoe has five folded protein domains and a long intrinsically disordered region. The largest is the Dilute domain, which is shared by Canoe and myosin V. To define the roles of this domain in Canoe, we combined biochemical, genetic and cell biological assays. AlphaFold was used to predict its structure, providing similarities and contrasts with Myosin V. Biochemical data suggested one potential shared function - the ability to dimerize. We generated Canoe mutants with the Dilute domain deleted (CnoΔDIL). Surprisingly, they were viable and fertile. CnoΔDIL localized to adherens junctions and was enriched at junctions under tension. However, when its dose was reduced, CnoΔDIL did not provide fully wild-type function. Furthermore, canoeΔDIL mutants had defects in the orchestrated cell rearrangements of eye development. This reveals the robustness of junction-cytoskeletal connections during morphogenesis and highlights the power of natural selection to maintain protein structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11006394PMC
http://dx.doi.org/10.1242/jcs.261734DOI Listing

Publication Analysis

Top Keywords

dilute domain
12
domain canoe
8
adherens junctions
8
canoe
7
canoe essential
4
essential linking
4
linking cell
4
junctions
4
cell junctions
4
junctions cytoskeleton
4

Similar Publications

Expression and Analysis of Gene in the Skin from Three Locations on Dun Mongolian Bider Horse.

Genes (Basel)

December 2024

Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China.

Background/objectives: The Mongolian horse, one of the oldest and most genetically diverse breeds, exhibits a wide variety of coat colors and patterns, including both wild-type and unique features. A notable characteristic of dun Mongolian horses is the presence of Bider markings-symmetrical, black-mottled patterns observed on the shoulder blades. These markings are also seen in Przewalski's horses.

View Article and Find Full Text PDF

Biomolecular condensates play key roles in the spatiotemporal regulation of cellular processes. Yet, the relationship between atomic features and condensate function remains poorly understood. We studied this relationship using the polar organizing protein Z (PopZ) as a model system, revealing how its material properties and cellular function depend on its ultrastructure.

View Article and Find Full Text PDF

Nanobody-based indirect competitive ELISA for the detection of aflatoxin M1 in dairy products.

Sci Rep

January 2025

Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China.

Aflatoxin M1 (AFM1) is known to be carcinogenic, mutagenic, and teratogenic and poses a serious threat to food safety and human health, which makes its surveillance critical. In this study, an indirect competitive ELISA (icELISA) based on a nanobody (Nb M4) was developed for the sensitive and rapid detection of AFM1 in dairy products. In our previous work, Nb M4 was screened from a Bactrian-camel-immunized phage-displayed library.

View Article and Find Full Text PDF

[Preparation and identification of monoclonal antibodies against human LAG3 by immunizing mice with recombinant eukaryotic cell antigens].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

December 2024

Department of Medical Experimental Center, Northern Jiangsu People's Hospital, Yangzhou 225001, China. *Corresponding author, E-mail: yyue_king

Objective To prepare mouse anti-human lymphocyte activation gene 3 (LAG3) monoclonal antibody (mAb) and perform immunological identification of the antibody. Methods BALB/c mice were immunized with LAG3-mLumin-3T3 cells, which stably express the extracellular and transmembrane regions of human LAG3 in mouse 3T3 cells. The secretion of anti-human LAG3 antibodies in mouse serum was assessed using flow cytometry and immunofluorescence.

View Article and Find Full Text PDF

Neurofilament Light Chain under the Lens of Structural Mass Spectrometry.

ACS Chem Neurosci

January 2025

National Measurement Laboratory, LGC, Queens Road, TW11 0LY Teddington, U.K.

Neurofilament light chain (NfL) is an early nonspecific biomarker in neurodegenerative diseases and traumatic brain injury, indicating axonal damage. This work describes the detailed structural characterization of a selected primary calibrator with the potential to be used in future reference measurement procedure (RMP) development for the accurate quantification of NfL. As a part of the described workflow, the sequence, higher-order structure as well as solvent accessibility, and hydrogen-bonding profile were assessed under three different conditions in KPBS, artificial cerebrospinal fluid, and artificial cerebrospinal fluid in the presence of human serum albumin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!