A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Feasibility of bone marrow edema detection using dual-energy cone-beam computed tomography. | LitMetric

AI Article Synopsis

  • The study explores the potential of dual-energy (DE) detection for diagnosing bone marrow edema (BME) using cone-beam computed tomography (CBCT) systems, which face challenges due to closely overlapping energies of water and fat in imaging.
  • A kV-switching DE CBCT approach paired with a detailed correction framework and a two-stage decomposition algorithm was employed to enhance the visibility and diagnosis of BME.
  • Results indicated that the processing methods effectively improved image quality and BME detection accuracy, with robust performance across various object sizes and positions in the imaging field.

Article Abstract

Background: Dual-energy (DE) detection of bone marrow edema (BME) would be a valuable new diagnostic capability for the emerging orthopedic cone-beam computed tomography (CBCT) systems. However, this imaging task is inherently challenging because of the narrow energy separation between water (edematous fluid) and fat (health yellow marrow), requiring precise artifact correction and dedicated material decomposition approaches.

Purpose: We investigate the feasibility of BME assessment using kV-switching DE CBCT with a comprehensive CBCT artifact correction framework and a two-stage projection- and image-domain three-material decomposition algorithm.

Methods: DE CBCT projections of quantitative BME phantoms (water containers 100-165 mm in size with inserts presenting various degrees of edema) and an animal cadaver model of BME were acquired on a CBCT test bench emulating the standard wrist imaging configuration of a Multitom Rax twin robotic x-ray system. The slow kV-switching scan protocol involved a 60 kV low energy (LE) beam and a 120 kV high energy (HE) beam switched every 0.5° over a 200° angular span. The DE CBCT data preprocessing and artifact correction framework consisted of (i) projection interpolation onto matched LE and HE projections views, (ii) lag and glare deconvolutions, and (iii) efficient Monte Carlo (MC)-based scatter correction. Virtual non-calcium (VNCa) images for BME detection were then generated by projection-domain decomposition into an Aluminium (Al) and polyethylene basis set (to remove beam hardening) followed by three-material image-domain decomposition into water, Ca, and fat. Feasibility of BME detection was quantified in terms of VNCa image contrast and receiver operating characteristic (ROC) curves. Robustness to object size, position in the field of view (FOV) and beam collimation (varied 20-160 mm) was investigated.

Results: The MC-based scatter correction delivered > 69% reduction of cupping artifacts for moderate to wide collimations (> 80 mm beam width), which was essential to achieve accurate DE material decomposition. In a forearm-sized object, a 20% increase in water concentration (edema) of a trabecular bone-mimicking mixture presented as ∼15 HU VNCa contrast using 80-160 mm beam collimations. The variability with respect to object position in the FOV was modest (< 15% coefficient of variation). The areas under the ROC curve were > 0.9. A femur-sized object presented a somewhat more challenging task, resulting in increased sensitivity to object positioning at 160 mm collimation. In animal cadaver specimens, areas of VNCa enhancement consistent with BME were observed in DE CBCT images in regions of MRI-confirmed edema.

Conclusion: Our results indicate that the proposed artifact correction and material decomposition pipeline can overcome the challenges of scatter and limited spectral separation to achieve relatively accurate and sensitive BME detection in DE CBCT. This study provides an important baseline for clinical translation of musculoskeletal DE CBCT to quantitative, point-of-care bone health assessment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.16962DOI Listing

Publication Analysis

Top Keywords

artifact correction
16
material decomposition
12
bme detection
12
cbct
9
bone marrow
8
marrow edema
8
cone-beam computed
8
computed tomography
8
bme
8
feasibility bme
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: