Novel lncRNA 803 related to Marek's disease inhibits apoptosis of DF-1 cells.

Avian Pathol

Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China.

Published: August 2024

Marek's disease (MD) is a neoplastic disease that significantly affects the poultry industry. Long non-coding RNAs (lncRNAs) are crucial regulatory factors in various biological processes, including tumourigenesis. However, the involvement of novel lncRNAs in the course of MD virus (MDV) infection is still underexplored. Here, we present the first comprehensive characterization of differentially expressed lncRNAs in chicken spleen at different stages of MDV infection. A series of differentially expressed lncRNAs was identified at each stage of MDV infection through screening. Notably, our investigation revealed a novel lncRNA, lncRNA 803, which exhibited significant differential expression at different stages of MDV infection and was likely to be associated with the p53 pathway. Further analyses demonstrated that the overexpression of lncRNA 803 positively regulated the expression of p53 and TP53BP1 in DF-1 cells, leading to the inhibition of apoptosis. This is the first study to focus on the lncRNA expression profiles in chicken spleens during MDV pathogenesis. Our findings highlight the potential role of the p53-related novel lncRNA 803 in MD pathogenesis and provide valuable insights for decoding the molecular mechanism of MD pathogenesis involving non-coding RNA. Differentially expressed lncRNAs in spleens of chickens infected with Marek's disease virus at different stages were identified for the first time.The effects of novel lncRNA 803 on p53 pathway and apoptosis of DF-1 cells were reported for the first time.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03079457.2024.2316817DOI Listing

Publication Analysis

Top Keywords

lncrna 803
20
novel lncrna
16
mdv infection
16
marek's disease
12
df-1 cells
12
differentially expressed
12
expressed lncrnas
12
apoptosis df-1
8
stages mdv
8
p53 pathway
8

Similar Publications

Background: Long non-coding RNA 01116 (linc01116) has been shown to be dysregulated in many tumors, and is closely related to the prognosis. This meta-analysis aimed to examine the correlation between linc01116 expression and cancer prognosis.

Methods: Six electronic databases were searched, and eligible studies were screened based on the inclusion and exclusion criteria.

View Article and Find Full Text PDF

Background: Although there have been significant advancements in the treatment modalities for gastric cancer (GC) in recent years, the overall prognosis remains poor, particularly for individuals in advanced stages. The absence of a sensitive tumor marker in GC is a crucial factor contributing to this challenge.

Methods: Our study focused on investigating a newly discovered long noncoding RNA (lncRNA) known as TCONS_00251376, which has been confirmed to exhibit differential expression in GC compared to adjacent tissues.

View Article and Find Full Text PDF

Objective: In gastric cancer cells, the influence of CAR T cells can be produced in the process of inhibiting the progression of gastric cancer, and the role of tyrosine phosphatase SHP2 can be explored in this study, along with its molecular mechanisms.

Methods: The research utilized subcutaneous tumor models in nude mice to assess gastric cancer progression. Protein expression was detected using Western blotting, while Q-PCR examined the expression levels of lncRNA SNHG18 and miR-211-5p in MGC-803 cells.

View Article and Find Full Text PDF

Transcriptome Analysis Reveals the Immunosuppression in Tiger Pufferfish () under Infection.

Animals (Basel)

July 2024

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.

The tiger pufferfish (), also known as fugu, has recently suffered from severe infections under aquaculture environment, yet the underlying immune mechanisms against the parasite remain poorly understood. In this study, we conducted a comprehensive transcriptome analysis of the gill tissue from infected and uninfected fish using PacBio long-read (one pooled sample each for seriously infected and healthy individuals, respectively) and Illumina short-read (three pools for mildly infected, seriously infected, and healthy individuals, respectively) RNA sequencing technologies. After aligning sequence data to fugu's reference genome, 47,307 and 34,413 known full-length transcripts were identified and profiled in healthy and infected fish, respectively.

View Article and Find Full Text PDF

Background: Recent studies have addressed the possible role of long non-coding RNAs lnc-RNAs), Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1), and Taurine Upregulated Gene 1 (TUG1), in modulating the underlying mechanisms of obesity-related metabolic abnormalities. However, studies are limited and contradictory. Hence, we sought to investigate the relationship of the transcript level of these two lnc-RNAs with metabolic syndrome (MetS)-related parameters in women with obesity and overweight.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!