The State of Artificial Intelligence in Skin Cancer Publications.

J Cutan Med Surg

Division of Dermatology, Department of Medicine, McGill University, Montreal, QC, Canada.

Published: April 2024

Background: Artificial intelligence (AI) in skin cancer is a promising research field to assist physicians and to provide support to patients remotely. Physicians' awareness to new developments in AI research is important to define the best practices and scope of integrating AI-enabled technologies within a clinical setting.

Objectives: To analyze the characteristics and trends of AI skin cancer publications from dermatology journals.

Methods: AI skin cancer publications were retrieved in June 2022 from the Web of Science. Publications were screened by title, abstract, and keywords to assess eligibility. Publications were fully reviewed. Publications were divided between nonmelanoma skin cancer (NMSC), melanoma, and skin cancer studies. The primary measured outcome was the number of citations. The secondary measured outcomes were articles' general characteristics and features related to AI.

Results: A total of 168 articles were included: 25 on NMSC, 77 on melanoma, and 66 on skin cancer. The most common types of skin cancers were melanoma (134, 79.8%), basal cell carcinoma (61, 36.3%), and squamous cell carcinoma (45, 26.9%). All articles were published between 2000 and 2022, with 49 (29.2%) of them being published in 2021. Original studies that developed or assessed an algorithm predominantly used supervised learning (66, 97.0%) and deep neural networks (42, 67.7%). The most used imaging modalities were standard dermoscopy (76, 45.2%) and clinical images (39, 23.2%).

Conclusions: Most publications focused on developing or assessing screening technologies with mainly deep neural network algorithms. This indicates the eminent need for dermatologists to label or annotate images used by novel AI systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11015717PMC
http://dx.doi.org/10.1177/12034754241229361DOI Listing

Publication Analysis

Top Keywords

skin cancer
28
cancer publications
12
artificial intelligence
8
skin
8
intelligence skin
8
nmsc melanoma
8
melanoma skin
8
cell carcinoma
8
deep neural
8
cancer
7

Similar Publications

Prognosis of Implant-Based Breast Reconstruction After Mastectomy Flap Necrosis: Predictors of Failure and Salvage.

Aesthetic Plast Surg

January 2025

Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.

Background: In the realm of implant-based breast reconstruction, mastectomy flap necrosis (MFN) is a prevalent yet grave complication that poses a threat to the stability of the inserted prosthesis. Although numerous investigations have scrutinized the risk factors for MFN development, few have delved into the aftermath, specifically implant failure or salvage. This study seeks to appraise the prognosis of the implanted prosthesis following MFN occurrence, as well as identify predictors of such outcomes.

View Article and Find Full Text PDF

A calcifying epithelial odontogenic tumour (CEOT) is a rare benign odontogenic tumour of epithelial origin accounting for approximately 1% of all odontogenic tumours. The intraosseous form occurs more commonly in the posterior mandible whereas the extraosseous form is common in the anterior maxilla. CEOT is often asymptomatic and presents with a painless swelling of the mandible.

View Article and Find Full Text PDF

MCT1 lactate transporter blockade re-invigorates anti-tumor immunity through metabolic rewiring of dendritic cells in melanoma.

Nat Commun

January 2025

Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France.

Dendritic cells (DC) are key players in antitumor immune responses. Tumors exploit their plasticity to escape immune control; their aberrant surface carbohydrate patterns (e.g.

View Article and Find Full Text PDF

Background: Programmed cell death 1 (PD-1) signaling blockade by immune checkpoint inhibitors (ICI) effectively restores immune surveillance to treat melanoma. However, chronic interferon-gamma (IFNγ)-induced immune homeostatic responses in melanoma cells contribute to immune evasion and acquired resistance to ICI. Poly ADP ribosyl polymerase 14 (PARP14), an IFNγ-responsive gene product, partially mediates IFNγ-driven resistance.

View Article and Find Full Text PDF

Subungual melanoma accounts for 1.9% of cutaneous melanomas. Amelanotic cases, comprising 15-25%, poses a significant diagnostic challenge because it can be misdiagnosed as other traumatic, inflammatory, or neoplastic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!