Interface engineering has proven to be a highly efficient strategy for modulating the physicochemical properties of electrocatalysts and further enhancing their electrochemical performance in related energy applications. In this context, the newly proposed crystalline-amorphous (c-a) heterostructures with unusual atomic arrangements at interfaces show strong competitiveness. Nonetheless, few efforts have been made to reveal and summarize the structure-activity relationship at the two-phase interface and the corresponding electrocatalytic mechanism. This concept is devoted to comprehensively discussing the fundamental characteristics of crystalline-amorphous electrocatalysts and their application in the field of energy conversion with typical examples. In addition, the development prospects and opportunities of crystalline-amorphous heterostructure are summarized to provide potential development directions for other types of clean energy development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.202300761 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!