Leishmaniasis encompasses a cluster of neglected tropical diseases triggered by kinetoplastid phatogens belonging to the genus Leishmania. Current therapeutic approaches are toxic, expensive, and require long-term treatment. Nanoparticles are emerging as a new alternative for the treatment of neglected tropical diseases. Silk Fibroin is a biocompatible and amphiphilic protein that can be used for formulating nanoemulsions, while kojic acid is a secondary metabolite with antileishmanial actions. Thus, this study evaluated the efficacy of a nanoemulsion, formulated with silk fibroin as the surfactant and containing kojic acid (NanoFKA), against promastigote and amastigote forms of () . The NanoFKA had an average particle size of 176 nm, Polydispersity Index (PDI) of 0.370, and a Zeta Potential of -32.3 mV. It presented inhibitory concentration (IC) values of >56 μg/mL and >7 μg/mL for the promastigote and amastigote forms, respectively. Ultrastructural analysis, cell cycle distribution and phosphatidylserine exposure showed that NanoFKA treatment induces apoptosis-like cell death and cell cycle arrest in () . In addition, NanoFKA exhibited no cytotoxicity against macrophages. Given these results, NanoFKA present leishmanicidal activity against () .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10844493 | PMC |
http://dx.doi.org/10.3389/fphar.2024.1331240 | DOI Listing |
Toxins (Basel)
December 2024
Food and Feed Safety Research Unit, Southern Regional Research Center, US Department of Agriculture, New Orleans, LA 70124, USA.
Kojic acid is a secondary metabolite with strong chelating and antioxidant properties produced by and . Although antioxidants and chelators are important virulence factors for plant pathogens, the ecological role of kojic acid remains unclear. We previously observed a greater gene expression of antioxidants, especially kojic acid, by non-aflatoxigenic when co-cultured with aflatoxigenic Aflatoxin production was also reduced.
View Article and Find Full Text PDFMar Drugs
December 2024
Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
The natural products industry is gaining increasing interest, not only due to modern lifestyles becoming more aware of environmental and sustainability issues but also because of the loss of efficacy and undesirable side effects of synthetic ingredients. This pioneering study provides a comprehensive comparison between extracts obtained from wild and commercial samples of Linnaeus, highlighting their multifaceted benefits in cosmetic applications. The antiaging potential of acetone (70 and 90%) and ethanol 60% extracts from wild and commercial samples of , focusing on their application in cosmetics, was explored.
View Article and Find Full Text PDFEur J Med Chem
December 2024
LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; DEQ-Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal. Electronic address:
Iron is essential for the formation, maturation and dispersal of bacterial biofilms, playing a crucial role in the physiological and metabolic functions of bacteria as well as in the regulation of virulence. Limited availability of iron can impair the formation of robust biofilms by altering cellular motility, hydrophobicity and protein composition of the bacterial surface. In this study, the antibiofilm activity of two natural iron chelating agents, kojic acid (5-hydroxy-2-hydroxymethyl-4H-pyran-4-one) and maltol (3-hydroxy-2-methyl-4-pyrone), were investigated against Staphylococcus aureus and Pseudomonas aeruginosa.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
Prolonged and unprotected exposure to the environment explicitly influences the development of hyperpigmented lesions. The enzyme tyrosinase (TYR) is a key target for regulating melanin synthesis. Several bioactive compounds derived from plant extracts have been found to possess potent anti-melanogenesis properties against TYR.
View Article and Find Full Text PDFMolecules
November 2024
Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy.
Tyrosinase, a key protein in the biosynthesis of melanin pigments, is crucial in determining skin pigmentation. Inhibiting tyrosinase activity is a promising approach for treating conditions related to excessive pigmentation. For the synthesis of more potent tyrosinase inhibitors, we combined two approaches, para-substitution and lipophilicity, to enhance the inhibitory properties of ()-2-(4-hydroxybenzylidene)hydrazine-1-carbotiamide, whose enzyme inhibitory properties have been previously demonstrated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!