This study investigates the potential use of circulating extracellular vesicles' (EVs) DNA and protein content as biomarkers for traumatic brain injury (TBI) in a mouse model. Despite an overall decrease in EVs count during the acute phase, there was an increased presence of exosomes (CD63 EVs) during acute and an increase in microvesicles derived from microglia/macrophages (CD11b+ EVs) and astrocytes (ACSA-2+ EVs) in post-acute TBI phases, respectively. Notably, mtDNA exhibited an immediate elevation post-injury. Neuronal (NFL) and microglial (Iba1) markers increased in the acute, while the astrocyte marker (GFAP) increased in post-acute TBI phases. Novel protein biomarkers (SAA, Hp, VWF, CFD, CBG) specific to different TBI phases were also identified. Biostatistical modeling and machine learning identified mtDNA and SAA as decisive markers for TBI detection. These findings emphasize the importance of profiling EVs' content and their dynamic release as an innovative diagnostic approach for TBI in liquid biopsies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10844832PMC
http://dx.doi.org/10.1016/j.isci.2024.108932DOI Listing

Publication Analysis

Top Keywords

tbi phases
12
traumatic brain
8
brain injury
8
mouse model
8
post-acute tbi
8
tbi
6
evs
5
serum amyloid
4
amyloid mitochondrial
4
mitochondrial dna
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!