The widespread dissemination of false information across various online platforms has emerged as a matter of paramount concern due to the potential harm it poses to individuals, communities, and entire nations. Substantial efforts are currently underway in the research community to combat this issue. A burgeoning area of study gaining significant traction is the development of fake news identification techniques. However, this field faces formidable challenges primarily stemming from limited resources, including access to comprehensive datasets, computational resources, and evaluation tools. To overcome these challenges, researchers are exploring various methodologies. One promising approach involves the use of feature abstraction and vectorization techniques. In this context, we highly recommend utilizing the Python sci-kit-learn module, which offers many invaluable tools such as the Count Vectorizer and Tiff Vectorizer. These tools enable the efficient handling of text data by converting it into numerical representations, thereby facilitating subsequent analysis. Once the text data is appropriately transformed, the next crucial step involves feature selection. To achieve optimal results, researchers often employ feature selection methods based on misperception matrices. These methods allow for the exploration and selection of the most suitable features, which are essential for achieving the highest accuracy in fake news identification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10844048PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e25244DOI Listing

Publication Analysis

Top Keywords

fake news
12
news identification
8
involves feature
8
text data
8
feature selection
8
lstmcnn hybrid
4
hybrid machine
4
machine learning
4
learning model
4
model unmask
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!