A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Incorporating the neutrosophic framework into kernel regression for predictive mean estimation. | LitMetric

In traditional statistics, all research endeavors revolve around utilizing precise, crisp data for the predictive estimation of population mean in survey sampling, when the supplementary information is accessible. However, these types of estimates often suffer from bias. The major aim is to uncover the most accurate estimates for the unknown value of the population mean while minimizing the mean square error (MSE). We have employed the neutrosophic approach, which is the extension of classical statistics that deals with the uncertain, vague, and indeterminate information, and proposed a neutrosophic predictive estimator of finite population mean using the kernel regression. The proposed estimator does not yield a single numerical value but instead provides an interval range within which the population parameter is likely to exist. This approach enhances the efficiency of the estimators by offering an estimated interval that encompasses the unknown value of the population mean with the least possible mean squared error (MSE). The simulation-based efficiency of the proposed estimator is discussed using the Sine, Bump and real-time temperature data set of Islamabad by using symmetric (Gaussian) kernel. The proposed non-parametric neutrosophic estimator has shown more effective results under the various bandwidth selectors than the adapted neutrosophic estimators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10845908PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e25471DOI Listing

Publication Analysis

Top Keywords

kernel regression
8
predictive estimation
8
unknown population
8
error mse
8
proposed estimator
8
population
5
incorporating neutrosophic
4
neutrosophic framework
4
framework kernel
4
regression predictive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!