( L.) has been extensively used orally and topically in treating various neurological disorders, including dementia. The optimum potential of traditional dosage forms of is limited for various reasons. Transdermal drug delivery system (TDDS) is a novel means of drug delivery and is known to overcome the drawbacks associated with traditional dosage forms. The current study aimed at fabricating and evaluating hydro-alcoholic extract (UHAE) and essential oil (UEO) loaded matrix-type transdermal patches having a combination of hydrophilic - hydroxyl propyl methyl cellulose (HPMC) and hydrophobic - ethyl cellulose (EC) polymers. ATR-FTIR, DSC, XRD, and SEM analysis were carried out to study drug-polymer interactions, confirming the formation of developed patches and drug compatibility with excipients. We assessed the fabricated patches to evaluate their physicochemical properties, drug release, and permeation characteristics via experiments. The physicochemical characteristics of patches showcased the development of good and stable films with clarity, smoothness, homogeneity, optimum flexibility and free from causing skin irritancy or sensitization. drug release and permeation profile of developed patches were evaluated employing Franz diffusion cells. UHAE and UEO patches exhibited a cumulative drug release of 81.61 and 85.24 %, respectively, in a sustained-release manner and followed non-Fickian release mechanisms. The permeation data revealed 66.82 % and 76.41 % of drug permeated from UHAE and UEO patches, respectively. The current research suggests that the formulated patches are more suitable for TDDS and hold potential significance in the treatment of dementia, contributing to enhanced patient compliance, thereby highlighting the implication of Unani Medicine in Nisyan (Dementia) treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10845912 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e25284 | DOI Listing |
Nat Med
January 2025
BioNTech US, Cambridge, MA, USA.
New treatment approaches are warranted for patients with advanced melanoma refractory to immune checkpoint blockade (ICB) or BRAF-targeted therapy. We designed BNT221, a personalized, neoantigen-specific autologous T cell product derived from peripheral blood, and tested this in a 3 + 3 dose-finding study with two dose levels (DLs) in patients with locally advanced or metastatic melanoma, disease progression after ICB, measurable disease (Response Evaluation Criteria in Solid Tumors version 1.1) and, where appropriate, BRAF-targeted therapy.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia, 30332-0100, U.S.A..
Delivery of therapies into skin is attractive for medical indications including vaccination and treatment of dermatoses but is highly constrained by the stratum corneum barrier. Microneedle (MN) patches have emerged as a promising technology to enable non-invasive, intuitive, and low-cost skin delivery. When combined with biodegradable polymer formulations, MN patches can further enable controlled-release drug delivery without injection.
View Article and Find Full Text PDFSci Rep
January 2025
Cellulose and Paper Department, National Research Centre, Cairo, 12622, Egypt.
Compounds containing the piperidine group are highly attractive as building blocks for designing new drugs. Functionalized piperidines are of significant interest due to their prevalence in the pharmaceutical field. Herein, 3-oxo-3-(piperidin-1-yl) propanenitrile has been synthesized, and piperidine-based sodium alginate/poly(vinyl alcohol) films have been prepared.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China.
Acute and chronic inflammation are important pathologies of benign airway stenosis (BAS) fibrosis, which is a frequent complication of critically ill patients. cGAS-STING signalling has an important role in inflammation and fibrosis, yet the function of STING in BAS remains unclear. Here we demonstrate using scRNA sequencing that cGAS‒STING signalling is involved in BAS, which is accompanied by increased dsDNA, expression and activation of STING.
View Article and Find Full Text PDFJ Nucl Med
January 2025
Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts;
Radionuclides used for imaging and therapy can show high molecular specificity in the body with appropriate targeting ligands. We hypothesized that local energy delivered by molecularly targeted radionuclides could chemically activate prodrugs at disease sites while avoiding activation in off-target sites of toxicity. As proof of principle, we tested whether this strategy of radionuclide-induced drug engagement for release (RAiDER) could locally deliver combined radiation and chemotherapy to maximize tumor cytotoxicity while minimizing off-target exposure to activated chemotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!