Schizophrenia (SZ) is a chronic and devastating mental illness that affects around 20 million individuals worldwide. Cognitive deficits and structural and functional changes of the brain, abnormalities of brain ECM components, chronic neuroinflammation, and devastating clinical manifestation during SZ are likely etiological factors shown by affected individuals. However, the pathophysiological events associated with multiple regulatory pathways involved in the brain of this complex disorder are still unclear. This study aimed to develop a pipeline based on bioinformatics and systems biology approaches for identifying potential therapeutic targets involving possible biological mechanisms from SZ patients and healthy volunteers. About 420 overlapping differentially expressed genes (DEGs) from three RNA-seq datasets were identified. Gene ontology (GO), and pathways analysis showed several biological mechanisms enriched by the commonly shared DEGs, including extracellular matrix organization (ECM) organization, collagen fibril organization, integrin signaling pathway, inflammation mediated by chemokines and cytokines signaling pathway, and GABA-B receptor II and IL4 mediated signaling. Besides, 15 hub genes (FN1, COL1A1, COL3A1, COL1A2, COL5A1, COL2A1, COL6A2, COL6A3, MMP2, THBS1, DCN, LUM, HLA-A, HLA-C, and FBN1) were discovered by comprehensive analysis, which was mainly involved in the ECM organization and inflammatory signaling pathway. Furthermore, the miRNA target of the hub genes was analyzed with the random-forest-based approach software miRTarBase. In addition, the transcriptional factors and protein kinases regulating overlapping DEGs in SZ, namely, SUZ12, EZH2, TRIM28, TP53, EGR1, CSNK2A1, GSK3B, CDK1, and MAPK14, were also identified. The results point to a new understanding that the hub genes (fibronectin 1, collagen, matrix metalloproteinase-2, and lumican) in the ECM organization and inflammatory signaling pathways may be involved in the SZ occurrence and pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10844262PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e25191DOI Listing

Publication Analysis

Top Keywords

hub genes
16
ecm organization
16
organization inflammatory
12
inflammatory signaling
12
signaling pathway
12
biology approaches
8
signaling pathways
8
pathways involved
8
biological mechanisms
8
organization
6

Similar Publications

Background: Long COVID, a heterogeneous condition characterized by a range of physical and neuropsychiatric presentations, can be presented with a proportion of COVID-19-infected individuals.

Methods: Transcriptomic data sets of those within gene expression profiles of COVID-19, long COVID, and healthy controls were retrieved from the GEO database. Differentially expressed genes (DEGs) falling under COVID-19 and long COVID were identified with R packages, and contemporaneously conducted module detection was performed with the Modular Pharmacology Platform (http://112.

View Article and Find Full Text PDF

Preeclampsia (PE) is a pregnancy-specific disorder characterized by an unclearly understood pathogenesis and poses a great threat to maternal and fetal safety. Cuproptosis, a novel form of cellular death, has been implicated in the advancement of various diseases. However, the role of cuproptosis and immune-related genes in PE is unclear.

View Article and Find Full Text PDF

Introduction: Oncolytic herpes simplex viruses (oHSVs) are a type of biotherapeutic utilized in cancer therapy due to their ability to selectively infect and destroy tumor cells without harming healthy cells. We sought to investigate the functional genomic response and altered metabolic pathways of human cancer cells to oHSV-1 infection and to elucidate the influence of these responses on the relationship between the virus and the cancer cells.

Methods: Two datasets containing gene expression profiles of tumor cells infected with oHSV-1 (G207) and non-infected cells from the Gene Expression Omnibus (GEO) database were processed and normalized using the R software.

View Article and Find Full Text PDF

Identification of crucial pathways and genes linked to endoplasmic reticulum stress in PCOS through combined bioinformatic analysis.

Front Mol Biosci

January 2025

Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.

Background: Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic condition impacting millions of women worldwide. This study sought to identify granulosa cell endoplasmic reticulum stress (GCERS)-related differentially expressed genes (DEGs) between women with PCOS and those without PCOS using bioinformatics and to investigate the related molecular mechanisms.

Methods: Two datasets were downloaded from GEO and analysed using the limma package to identify DEGs in two groups-PCOS and normal granulosa cells.

View Article and Find Full Text PDF

The role of lnc‑MAPKAPK5‑AS1 in immune cell infiltration in hepatocellular carcinoma: Bioinformatics analysis and validation.

Oncol Lett

March 2025

Guangzhou Center for Disease Control and Prevention, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China.

The oncogenic and tumor suppressor roles of lnc-MAPKAPK5-AS1 in multiple cancers suggest its complexity in modulating cancer progression. The expression and promoter methylation level of lnc-MAPKAPK5-AS1 in hepatocellular carcinoma (HCC) was investigated through data mining from The Cancer Genome Atlas and Gene Expression Omnibus and its significance in prognosis and immunity was explored. lnc-MAPKAPK5-AS1 was co-expressed with its protein-coding gene MAPKAPK5 in HCC and exhibited upregulation in HCC tissues as a result of hypomethylation of its promoter region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!