Lack of adequate models significantly hinders advances in prostate cancer treatment, where resistance to androgen-deprivation therapies and bone metastasis remain as major challenges. Current models fail to faithfully mimic the complex prostate physiology. animal models can shed light on the oncogenes involved in prostate cancer development and progression; however, the animal prostate gland is fundamentally different from that of human, and the underlying genetic mechanisms are different. To address this problem, we developed the first microfluidic human Prostate-Cancer-on-Chip (PCoC) model, where human prostate cancer and stromal fibroblast cells were co-cultivated in two channels separated by a porous membrane under culture medium flow. The established microenvironment enables soluble signaling factors secreted by each culture to locally diffuse through the membrane pores affecting the neighboring culture. We particularly explored the conversion of the stromal fibroblasts into cancer-associated fibroblasts (CAFs) due to the interaction between the 2 cell types. Immunofluorescence microscopy revealed that tumor cells induced CAF biomarkers, αSMA and COL1A1, in stromal fibroblasts. The stromal CAF conversion level was observed to increase along the flow direction in response to diffusion agents, consistent with simulations of solute concentration gradients. The tumor cells also downregulated androgen receptor (AR) expression in stromal fibroblasts, while an adequate level of stromal AR expression is maintained in normal prostate homeostasis. We further investigated tumor invasion into the stroma, an early step in the metastatic cascade, in devices featuring a serpentine channel with orthogonal channel segments overlaying a straight channel and separated by an 8 µm-pore membrane. Both tumor cells and stromal CAFs were observed to cross over into their neighboring channel, and the stroma's role seemed to be proactive in promoting cell invasion. As control, normal epithelial cells neither induced CAF conversion nor promoted cell invasion. In summary, the developed PCoC model allows spatiotemporal analysis of the tumor-stroma dynamic interactions, due to bi-directional signaling and physical contact, recapitulating tissue-level multicellular responses associated with prostate cancer . Hence, it can serve as an model to dissect mechanisms in human prostate cancer development and seek advanced therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10844564 | PMC |
http://dx.doi.org/10.3389/fbioe.2024.1302223 | DOI Listing |
Ann Nucl Med
January 2025
Department of Biomedical Sciences, Humanitas University, Milan, Italy.
The purpose of this systematic review was to evaluate the role of PSMA PET/CT in intermediate-risk prostate cancer (PCa) patients, to determine whether it could help improve treatment strategy and prognostic stratification. A systematic literature search up to May 2024 was conducted in the PubMed, Embase and Scopus databases. Articles with mixed risk patient populations, review articles, editorials, letters, comments, or case reports were excluded.
View Article and Find Full Text PDFJ Neurooncol
January 2025
Department of Neurosurgery, Allegheny Health Network, Neuroscience Institute, Pittsburgh, PA, United States.
Langenbecks Arch Surg
January 2025
Department for the Promotion of Medical Device Innovation, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
Purpose: Assessing surgical skills is vital for training surgeons, but creating objective, automated evaluation systems is challenging, especially in robotic surgery. Surgical procedures generally involve dissection and exposure (D/E), and their duration and proportion can be used for skill assessment. This study aimed to develop an AI model to acquire D/E parameters in robot-assisted radical prostatectomy (RARP) and verify if these parameters could distinguish between novice and expert surgeons.
View Article and Find Full Text PDFInsights Imaging
January 2025
Department of Radiology, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China.
Objective: To evaluate the feasibility of utilizing artificial intelligence (AI)-predicted biparametric MRI (bpMRI) image features for predicting the aggressiveness of prostate cancer (PCa).
Materials And Methods: A total of 878 PCa patients from 4 hospitals were retrospectively collected, all of whom had pathological results after radical prostatectomy (RP). A pre-trained AI algorithm was used to select suspected PCa lesions and extract lesion features for model development.
Mov Disord Clin Pract
January 2025
The Edmond J. Safra Program in Parkinson's Disease, University Health Network and the University of Toronto, Toronto, Ontario, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!