Introduction: Implantable cardiac monitors (ICMs) provide long-term arrhythmia monitoring, but high rates of false detections increase the review burden. The new "SmartECG" algorithm filters false detections. Using large real-world data sets, we aimed to quantify the reduction in workload and any loss in sensitivity from this new algorithm.
Methods: Patients with a BioMonitor IIIm and any device indication were included from three clinical projects. All subcutaneous ECGs (sECGs) transmitted via remote monitoring were classified by the algorithm as "true" or "false." We quantified the relative reduction in workload assuming "false" sECGs were ignored. The remote monitoring workload from five hospitals with established remote monitoring routines was evaluated. Loss in sensitivity was estimated by testing a sample of 2000 sECGs against a clinical board of three physicians.
Results: Of our population of 368 patients, 42% had an indication for syncope or pre-syncope and 31% for cryptogenic stroke. Within 418.5 patient-years of follow-up, 143,096 remote monitoring transmissions contained 61,517 sECGs. SmartECG filtered 42.8% of all sECGs as "false," reducing the number per patient-year from 147 to 84. In five hospitals, nine trained reviewers inspected on average 105 sECGs per working hour. This results in an annual working time per patient of 83 min without SmartECG, and 48 min with SmartECG. The loss of sensitivity is estimated as 2.6%. In the majority of cases where true arrhythmias were rejected, SmartECG classified the same type of arrhythmia as "true" before or within 3 days of the falsely rejected sECG.
Conclusion: SmartECG increases efficiency in long-term arrhythmia monitoring using ICMs. The reduction of workload by SmartECG is meaningful and the risk of missing a relevant arrhythmia due to incorrect filtering by the algorithm is limited.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10844377 | PMC |
http://dx.doi.org/10.3389/fcvm.2024.1343424 | DOI Listing |
HIV Med
January 2025
Centre for Immunology and Vaccinology, Imperial College London, London, UK.
Introduction: The HIV/AIDS epidemic, with 85.6 million infections and 40.4 million AIDS-related deaths globally, remains a critical public health challenge.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Sankt Augustin, Germany.
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting millions worldwide, leading to cognitive and functional decline. Early detection and intervention are crucial for enhancing the quality of life of patients and their families. Remote Monitoring Technologies (RMTs) offer a promising solution for early detection by tracking changes in behavioral and cognitive functions, such as memory, language, and problem-solving skills.
View Article and Find Full Text PDFAIDS Behav
January 2025
Center for AIDS Intervention Research, Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, 2153 N. Dr. Martin Luther King Jr. Dr., Milwaukee, WI, 53212, USA.
Self-collected dried blood spot (DBS) samples may be useful in monitoring viral load (VL) in research studies or clinically given that they eliminate the need for participants to travel to study sites or laboratories. Despite this, little information exists about monitoring VL using DBS self-collected at home, and no information exists on DBS for this use among older rural people living with HIV (PLH), a population that could benefit from self-collection given difficulty accessing care. We report on the feasibility and acceptability of self-collected DBS samples, DBS VL results, concordance between self-reported and DBS VL, and factors associated with DBS detectable VL in a rural Southern U.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
Cyanobacterial blooms are increasingly becoming major threats to global inland aquatic ecosystems. Phycocyanin (PC), a pigment unique to cyanobacteria, can provide important reference for the study of cyanobacterial blooms warning. New satellite technology and cloud computing platforms have greatly improved research on PC, with the average number of studies examining it having increased from 5 per year before 2018 to 17 per year thereafter.
View Article and Find Full Text PDFSci Data
January 2025
Remote Sensing Centre for Earth System Research (RSC4Earth), Leipzig University, Leipzig, 04103, Germany.
With climate extremes' rising frequency and intensity, robust analytical tools are crucial to predict their impacts on terrestrial ecosystems. Machine learning techniques show promise but require well-structured, high-quality, and curated analysis-ready datasets. Earth observation datasets comprehensively monitor ecosystem dynamics and responses to climatic extremes, yet the data complexity can challenge the effectiveness of machine learning models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!