Contribution of optical resolution to the spatial precision of two-photon optogenetic photostimulation .

Neurophotonics

University of Oxford, Department of Physiology, Anatomy, and Genetics, Oxford, United Kingdom.

Published: January 2024

Significance: Two-photon optogenetics combines nonlinear excitation with noninvasive activation of neurons to enable the manipulation of neural circuits with a high degree of spatial precision. Combined with two-photon population calcium imaging, these approaches comprise a flexible platform for all-optical interrogation of neural circuits. However, a multitude of optical and biological factors dictate the exact precision of this approach , where it is most usefully applied.

Aim: We aimed to assess how the optical point spread function (OPSF) contributes to the spatial precision of two-photon photostimulation in neurobiology.

Approach: We altered the axial spread of the OPSF of the photostimulation beam using a spatial light modulator. Subsequently, calcium imaging was used to monitor the axial spatial precision of two-photon photostimulation of layer 2 neurons in the mouse neocortex.

Results: We found that optical resolution is not always the limiting factor of the spatial precision of two-photon optogenetic photostimulation and, by doing so, reveal the key factors that must be improved to achieve maximal precision.

Conclusions: Our results enable future work to focus on the optimal factors by providing key insight from controlled experiments in a manner not previously reported. This research can be applied to advance the state-of-the-art of all-optical interrogation, extending the toolkit for neuroscience research to achieve spatiotemporal precision at the crucial levels in which neural circuits operate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10846536PMC
http://dx.doi.org/10.1117/1.NPh.11.1.015006DOI Listing

Publication Analysis

Top Keywords

spatial precision
20
precision two-photon
16
neural circuits
12
optical resolution
8
two-photon optogenetic
8
optogenetic photostimulation
8
calcium imaging
8
all-optical interrogation
8
two-photon photostimulation
8
precision
7

Similar Publications

Introduction: Although photodynamic therapy (PDT) shows considerable potential for cancer treatment due to its precise spatial control and reduced toxicity, effectively eliminating residual cells under hypoxic conditions remains challenging because of the resistance conferred by these cells.

Methods: Herein, we synthesize an amphiphilic PEGylated polyphosphoester and present a nanocarrier (NP) specifically designed for the codelivery of hydrophobic photosensitizer (chlorin e6, Ce6) and hypoxia-activated prodrugs (tirapazamine, TPZ). We investigate the antitumor effect of NP on both cellular and animal level.

View Article and Find Full Text PDF

Introduction: Traditional extraocular electrical stimulation typically produces diffuse electric fields across the retina, limiting the precision of targeted therapy. Temporally interfering (TI) electrical stimulation, an emerging approach, can generate convergent electric fields, providing advantages for targeted treatment of various eye conditions.

Objective: Understanding how detailed structures of the retina, especially the optic nerve, affects electric fields can enhance the application of TI approach in retinal neurodegenerative and vascular diseases, an essential aspect that has been frequently neglected in previous researches.

View Article and Find Full Text PDF

The advent of spatial transcriptomics and spatial proteomics have enabled profound insights into tissue organization to provide systems-level understanding of diseases. Both technologies currently remain largely independent, and emerging same slide spatial multi-omics approaches are generally limited in plex, spatial resolution, and analytical approaches. We introduce IN-situ DEtailed Phenotyping To High-resolution transcriptomics (IN-DEPTH), a streamlined and resource-effective approach compatible with various spatial platforms.

View Article and Find Full Text PDF

Understanding kinase action requires precise quantitative measurements of their activity . In addition, the ability to capture spatial information of kinase activity is crucial to deconvolute complex signaling networks, interrogate multifaceted kinase actions, and assess drug effects or genetic perturbations. Here we developed a proteomic kinase activity sensor platform (ProKAS) for the analysis of kinase signaling using mass spectrometry.

View Article and Find Full Text PDF

Early embryo development features autonomous, maternally-driven cell divisions that self- organize the multicellular blastula or blastocyst tissue. Maternal control cedes to the zygote starting with the onset of widespread zygotic genome activation (ZGA), which is essential for subsequent cell fate determination and morphogenesis. Intriguingly, although the onset of ZGA is highly regulated at the level of an embryo, it can be non-homogenous and precisely patterned at the single-cell level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!