AI Article Synopsis

  • Droplet evaporation on rough substrates is critical for applications like cooling and micro/nanoparticle assembly, but understanding this process solely through macroscopic studies is challenging due to its complexity.
  • Molecular dynamics simulations were used to analyze droplet evaporation on hydrophilic substrates with varying roughness (0.1, 0.15, and 0.2 μm), comparing results with relevant experiments to better understand the mechanisms involved.
  • The study found that while macroscale droplets exhibited a stable evaporation mode regardless of roughness, nanoscale droplets showed a shift in evaporation modes with increasing roughness, highlighting the significant influence of scale on the evaporation dynamics and heat transfer efficiency on rough substrates.

Article Abstract

Droplet evaporation on rough substrates plays an essential role in cooling and micro/nanoparticle assembly. Currently, there are numerous macroscopic experiments and theoretical models to investigate the droplet evaporation behavior on rough substrates. However, due to the complexity of this phenomenon, understanding its mechanisms solely through macroscale studies is difficult. To this end, molecular dynamics simulations of the models with distinct roughness factors are performed, and the obtained results are compared with those of relevant experiments of droplet evaporation on three hydrophilic substrates with different roughness average of 0.1, 0.15, and 0.2 μm, respectively. In this way, we assess the evaporation on these rough systems and the effect of scale on macro- and nanodroplets, which allows us to explore deeper the mechanism of droplet evaporation on rough hydrophilic substrates. In particular, we find that in the case of macroscale droplets, the evaporation mode remains the same with increasing roughness, pointing to a combined mixed and constant-contact-radius (CCR) mode. In the case of nanoscale droplets, the evaporation model is the constant-contact-angle mode when the roughness factor 1, while the mixed and CCR modes are found for = 1.5 and 2, respectively. The scale effect has significant influence on the evaporation pattern of droplets on rough hydrophilic substrates. Moreover, it is also found that increasing the roughness of substrates expands the substrate-droplet contact area on both the macro- and nanoscale, which in turn enhances the heat transfer from the substrate toward the droplet. We anticipate that this first systematic analysis of scale effects provides further insights into the evaporation dynamics of droplets on rough hydrophilic substrates and has significant implications for the advancement of nanotechnology.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.3c03147DOI Listing

Publication Analysis

Top Keywords

droplet evaporation
16
hydrophilic substrates
16
rough substrates
12
evaporation rough
12
rough hydrophilic
12
evaporation
10
evaporation dynamics
8
macro- nanodroplets
8
substrates
8
substrates roughness
8

Similar Publications

Spontaneous Bubble Growth Inside High-Saturation-Vapor-Pressure and High-Air-Solubility Liquids and Emulsion Droplets.

Langmuir

January 2025

Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Avenue, Sofia 1164, Bulgaria.

Spontaneous bubble growths in liquids are usually triggered by rapid changes in pressure or temperature that can lead to liquid gas supersaturation. Here, we report alternative scenarios of the spontaneous growths of bubbles inside a high-saturation-vapor-pressure and high-air-solubility perfluorocarbon liquid (PP1) that were observed under ambient quiescent conditions. First, we investigate spontaneous bubble growth inside the single PP1 phase, which was left to evaporate freely.

View Article and Find Full Text PDF

Self-organized contact line instabilities (CLI) of a macroscopic liquid crystal (LC) droplet can be an ingenious pathway to generate a large collection of miniaturized LC drops. For example, when a larger drop of volatile solvent (e.g.

View Article and Find Full Text PDF

The Role of Re-Entrant Microstructures in Modulating Droplet Evaporation Modes.

Micromachines (Basel)

December 2024

Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, 170 Kessels Road, Brisbane, QLD 4111, Australia.

The evaporation dynamics of sessile droplets on re-entrant microstructures are critical for applications in microfluidics, thermal management, and self-cleaning surfaces. Re-entrant structures, such as mushroom-like shapes with overhanging features, trap air beneath droplets to enhance non-wettability. The present study examines the evaporation of a water droplet on silicon carbide (SiC) and silicon dioxide (SiO) re-entrant structures, focusing on the effects of material composition and solid area fraction on volume reduction, contact angle, and evaporation modes.

View Article and Find Full Text PDF

Concave Microwell Formation Induced by PDMS Water Vapor Permeability for Spheroid Generation.

Micromachines (Basel)

December 2024

Institute of Life Science and Resources & Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea.

This study introduces a novel method for the fabrication of concave microwells involving water vapor permeation through polydimethylsiloxane (PDMS). This method leverages the exceptional water vapor permeability of PDMS to enable a scalable and cost-effective fabrication process, addressing the limitations of existing techniques such as photolithography that are resource-intensive and complex. PDMS is more permeable to water vapor than to other gas molecules, resulting in the formation of microwells.

View Article and Find Full Text PDF

This study explores the integration of nanotechnology and Long Short-Term Memory (LSTM) machine learning algorithms to enhance the understanding and optimization of fuel spray dynamics in compression ignition (CI) engines with varying bowl geometries. The incorporation of nanotechnology, through the addition of nanoparticles to conventional fuels, improves fuel atomization, combustion efficiency, and emission control. Simultaneously, LSTM models are employed to analyze and predict the complex spray behavior under diverse operational and geometric conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!