Synaptotagmin-1 (Syt1) is a presynaptic calcium sensor with two calcium binding domains, C2A and C2B, that triggers action potential-induced synchronous neurotransmitter release, while suppressing asynchronous and spontaneous release. We identified a de novo missense mutation (P401L) in the C2B domain in a patient with developmental delay and autistic symptoms. Expressing the orthologous mouse mutant (P400L) in cultured Syt1 null mutant neurons revealed a reduction in dendrite outgrowth with a proportional reduction in synapses. This was not observed in single Syt1-rescued neurons that received normal synaptic input when cultured in a control network. Patch-clamp recordings showed that spontaneous miniature release events per synapse were increased more than 500% in Syt1-rescued neurons, even beyond the increased rates in Syt1 KO neurons. Furthermore, action potential-induced asynchronous release was increased more than 100%, while synchronous release was unaffected. A similar shift to more asynchronous release was observed during train stimulations. These cellular phenotypes were also observed when Syt1 was overexpressed in wild type neurons. Our findings show that Syt1 desynchronizes neurotransmission by increasing the readily releasable pool for asynchronous release and reducing the suppression of spontaneous and asynchronous release. Neurons respond to this by shortening their dendrites, possibly to counteract the increased synaptic input. Syt1 acts in a dominant-negative manner supporting a causative role for the mutation in the heterozygous patient. We propose that the substitution of a rigid proline to a more flexible leucine at the bottom of the C2B domain impairs clamping of release by interfering with Syt1's primary interface with the SNARE complex. This is a novel cellular phenotype, distinct from what was previously found for other SYT1 disease variants, and points to a role for spontaneous and asynchronous release in SYT1-associated neurodevelopmental disorder.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371641PMC
http://dx.doi.org/10.1038/s41380-024-02444-5DOI Listing

Publication Analysis

Top Keywords

asynchronous release
20
release
11
novo missense
8
missense mutation
8
neurodevelopmental disorder
8
neurotransmitter release
8
action potential-induced
8
c2b domain
8
syt1-rescued neurons
8
synaptic input
8

Similar Publications

Magnetic nanoparticles (MNPs) used for magnetic hyperthermia can not only damage tumor cells after elevating to a specific temperature but also provide the temperature required for thermosensitive liposomes (TSL) to release doxorubicin (DOX). MNPs injected into tumor will generate heat under an alternating magnetic field, so the MNPs distribution can determine temperature distribution and further affect the DOX concentration used for tumor therapy. This study proposes an asynchronous injection strategy for this combination therapy in order to improve the DOX concentration value for drug therapy, in which the MNPs are injected into tumor after a certain lagging of TSL injection in order to increase the TSL concentration inside tumor.

View Article and Find Full Text PDF

Synchronous Acute Appendicitis and Cholecystitis.

CRSLS

January 2025

Department of Surgery, King Saud University Medical City, Riyadh, Saudi Arabia. (Drs. Aljunaydil, Mattar, Almufawaz, AlOthman, and Alalem).

Article Synopsis
  • Acute appendicitis and acute cholecystitis often occur together, and surgical management is effective for both conditions when they present simultaneously.
  • A 30-year-old female patient presented with abdominal pain and underwent imaging that confirmed the diagnoses, leading to a successful surgical intervention combining cholecystectomy and appendectomy.
  • The case underscores the importance of recognizing the possibility of both conditions occurring together and utilizing established management guidelines for effective treatment.
View Article and Find Full Text PDF
Article Synopsis
  • The commercialization of perovskite solar cells (PSCs) is hindered by their fragility and sensitivity to moisture.
  • A new asynchronous cross-linking strategy using divinyl sulfone (DVS) improves perovskite crystallization and creates a durable network through post-treatment with glycerinum.
  • This method boosts the efficiency of PSCs to over 25%, enhances their water resistance, reduces stress, and improves durability, marking a significant advancement in their performance and longevity.
View Article and Find Full Text PDF

Permafrost is a potentially important source of deglacial carbon release alongside deep-sea carbon outgassing. However, limited proxies have restricted our understanding in circumarctic regions and the last deglaciation. Tibetan Plateau (TP), the Earth's largest low-latitude and alpine permafrost region, remains underexplored.

View Article and Find Full Text PDF

Low expression of CCKBR in the acinar cells is associated with insufficient starch hydrolysis in ruminants.

Commun Biol

December 2024

CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, China.

Unlike monogastric animals, ruminants exhibit significantly lower starch digestibility in the small intestine. A better understanding of the physiological mechanisms that regulate digestion patterns in ruminants could lead to an increased use of starch concentrates. Here we show more robust pancreatic exocrine function in adult goats (AG) than in neonatal goats (NG) by combining scRNA-seq and proteomic analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!