Most established clinical walking tests assess specific aspects of movement function (velocity, endurance, etc.) but are generally unable to determine specific biomechanical or neurological deficits that limit an individual's ability to walk. Recently, inertial measurement units (IMU) have been used to collect objective kinematic data for gait analysis and could be a valuable extension for clinical assessments (e.g., functional walking measures). This study assesses the reliability of an IMU-based overground gait analysis during the 2-min walk test (2mWT) in individuals with spinal cord injury (SCI). Furthermore, the study elaborates on the capability of IMUs to distinguish between different gait characteristics in individuals with SCI. Twenty-six individuals (aged 22-79) with acute or chronic SCI (AIS: C and D) completed the 2mWT with IMUs attached above each ankle on 2 test days, separated by 1 to 7 days. The IMU-based gait analysis showed good to excellent test-retest reliability (ICC: 0.77-0.99) for all gait parameters. Gait profiles remained stable between two measurements. Sensor-based gait profiling was able to reveal patient-specific gait impairments even in individuals with the same walking performance in the 2mWT. IMUs are a valuable add-on to clinical gait assessments and deliver reliable information on detailed gait pathologies in individuals with SCI.Trial registration: NCT04555759.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10847409PMC
http://dx.doi.org/10.1038/s41598-024-53301-yDOI Listing

Publication Analysis

Top Keywords

gait analysis
12
gait
11
patient-specific gait
8
gait profiles
8
inertial measurement
8
measurement units
8
2-min walk
8
walk test
8
spinal cord
8
cord injury
8

Similar Publications

Mapping the neural substrate of high dual-task gait cost in older adults across the cognitive spectrum.

Brain Struct Funct

January 2025

Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, 1151 Richmond Street, North London, ON, N6A 5C1, Canada.

The dual task cost of gait (DTC) is an accessible and cost-effective test that can help identify individuals with cognitive decline and dementia. However, its neural substrate has not been widely described. This study aims to investigate the neural substrate of the high DTC in older adults across the spectrum of cognitive decline.

View Article and Find Full Text PDF

Motor synergy and energy efficiency emerge in whole-body locomotion learning.

Sci Rep

January 2025

Neuro-Robotics Lab, Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan.

Humans exploit motor synergies for motor control; however, how they emerge during motor learning is not clearly understood. Few studies have dealt with the computational mechanism for generating synergies. Previously, optimal control generated synergistic motion for the upper limb; however, it has not yet been applied to the high-dimensional whole-body system.

View Article and Find Full Text PDF

A valid novel ground reaction force distribution algorithm to determine midfoot kinetics of gait with a single force plate.

Gait Posture

December 2024

Marquette University, 1250 W. Wisconsin Ave, Milwaukee, WI 53233, United States; Shriners Children's Chicago, 2211 N. Oak Park Ave, Chicago, IL 60707, United States.

Background: Understanding midfoot joint kinetics is valuable for improved treatment of foot pathologies. Segmental foot kinetics cannot currently be obtained in a standard gait lab without the use of multiple force plates or a pedobarographic plate overlaid with a force plate due to the single ground reaction force (GRF) vector.

Research Question: Can an algorithm be created to distribute the GRF into multiple segmental vectors that will allow for calculation of accurate midfoot and ankle moments?

Methods: 20 pediatric subjects (10 typically developing, 10 with foot pathology) underwent multi-segment foot gait analysis using the Milwaukee Foot Model.

View Article and Find Full Text PDF

Agreement analysis and associated factors of SARC-F and SARC-CALF in screening of risk sarcopenia in people living with human immunodeficiency virus.

Clinics (Sao Paulo)

January 2025

Posgraduate Program in Food, Nutrition and Health, Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil. Electronic address:

Introduction: People Living with Human Immunodeficiency Virus (PLHIV) appear to be at a higher risk of developing sarcopenia. Various factors seem to influence the risk of sarcopenia, and its prevalence may differ depending on the screening tool used. This study aimed to (i) Screen the risk of sarcopenia in PLHIV using the SARC-F and SARCCalf and identify associated factors; (ii) Analyze the agreement between the instruments in PLHIV.

View Article and Find Full Text PDF

Exploratory analysis of gait mechanics in farmers.

J Occup Environ Hyg

January 2025

Department of Kinesiology & Health Promotion, University of Kentucky, Lexington, Kentucky.

Farmers may be at a higher risk of developing hip osteoarthritis (OA) due to the high demands of their occupation. To the authors' knowledge, the gait patterns of farmers that may be associated with hip joint degeneration have yet to be analyzed. Therefore, this study compares gait mechanics between farmers and non-farmers (controls).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!