The three-dimensional turbulent flow around a Flettner rotor, i.e. an engine-driven rotating cylinder in an atmospheric boundary layer, is studied via direct numerical simulations (DNS) for three different rotation speeds ([Formula: see text]). This technology offers a sustainable alternative mainly for marine propulsion, underscoring the critical importance of comprehending the characteristics of such flow. In this study, we evaluate the aerodynamic loads produced by the rotor of height h, with a specific focus on the changes in lift and drag force along the vertical axis of the cylinder. Correspondingly, we observe that vortex shedding is inhibited at the highest [Formula: see text] values investigated. However, in the case of intermediate [Formula: see text], vortices continue to be shed in the upper section of the cylinder ([Formula: see text]). As the cylinder begins to rotate, a large-scale motion becomes apparent on the high-pressure side, close to the bottom wall. We offer both a qualitative and quantitative description of this motion, outlining its impact on the wake deflection. This finding is significant as it influences the rotor wake to an extent of approximately one hundred diameters downstream. In practical applications, this phenomenon could influence the performance of subsequent boats and have an impact on the cylinder drag, affecting its fuel consumption. This fundamental study, which investigates a limited yet significant (for DNS) Reynolds number and explores various spinning ratios, provides valuable insights into the complex flow around a Flettner rotor. The simulations were performed using a modern GPU-based spectral element method, leveraging the power of modern supercomputers towards fundamental engineering problems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10847464 | PMC |
http://dx.doi.org/10.1038/s41598-024-53194-x | DOI Listing |
BMC Public Health
December 2024
Department of Hospital Infection Control, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
Background: The burden of cardiovascular disease (CVD) is severe worldwide. Although many studies have investigated the association of particulate pollution with CVD, the effect of finer particulate pollution components on CVD remains unclear. This study aimed to explore the effect of five PM components ([Formula: see text], sulfate; [Formula: see text], nitrate; [Formula: see text], ammonium; OM, organic matter; BC, carbon black) on CVD admission in Shanghai City, identify the susceptible population, and provide clues for the prevention and control of particulate pollution.
View Article and Find Full Text PDFIn Vivo
December 2024
Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan;
Background/aim: Gangliosides regulate bone formation and resorption. Bone formation is reduced in mice lacking ganglioside GM2/GD2 synthase due to a decrease in osteoblasts. However, the effects of the loss of complex gangliosides by the deletion of both GM2/GD2 and GD3 synthases are unknown.
View Article and Find Full Text PDFIn Vivo
December 2024
Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig, Germany;
Background/aim: The recently published Node-Reporting and Data System (Node-RADS) can aid the characterization of lymph nodes in cross-sectional imaging. This study investigated the Node-RADS system in computed tomography (CT) to characterize lymph nodes in esophageal cancer.
Patients And Methods: Overall, 126 patients (15 female, 11.
Anticancer Res
January 2025
Department of Biotechnology, Korea National University of Transportation, Chungbuk, Republic of Korea
Background/aim: Kisspeptin has multifaceted roles in both normal and pathological conditions. Although lung cancer is a leading cause of cancer worldwide, the role of kisspeptin in lung cancer remains poorly understood. Thus, this study aimed to investigate the effects of kisspeptin on lung cancer.
View Article and Find Full Text PDFPLoS One
December 2024
Tandy School of Computer Science, The University of Tulsa, Tulsa, OK, United States of America.
In this manuscript, we present a novel mathematical model for understanding the dynamics of HIV/AIDS and analyzing optimal control strategies. To capture the disease dynamics, we propose a new Caputo-Fabrizio fractional-order mathematical model denoted as SEIEUPIATR, where the exposed class is subdivided into two categories: exposed-identified EI and exposed-unidentified EU individuals. Exposed-identified individuals become aware of the disease within three days, while exposed-unidentified individuals remain unaware for more than three days.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!