Scaling up the synthesis of fluorescent silica nanoparticles to meet the current demand in diverse applications involves technological limitations. The present study relates to the hydrothermal synthesis of water-soluble, crystalline, blue-emitting amine-functionalized silica nanoparticles from coal fly ash sustainably and economically. This study used tertiary amine (trimethylamine) to prepare amine-functionalized fluorescent silica nanoparticles, enhancing fluorescence quantum yield and nitrogen content for nanofertilizer application. The TEM and FESEM studies show that the silica nanoparticles have a spherical morphology with an average diameter of 4.0 nm. The x-ray photoelectron and Fourier transform infrared spectroscopy studies reveal the presence of the amine group at the surface of silica nanoparticles. The silica nanoparticles exhibit blue fluorescence with an emission maximum of 454 nm at 370 nm excitation and show excitation-dependent emission properties in the aqueous medium. With the perfect spectral overlap between silica nanoparticle emission (donor) and chlorophyll absorption (acceptor), fluorescent silica nanoparticles enhance plant photosynthesis rate by resonance energy transfer. This process accelerates the photosynthesis rate to improve the individual plant's quality and growth. These findings suggested that the fly ash-derived functionalized silica nanoparticles could be employed as nanofertilizers and novel delivery agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10847091 | PMC |
http://dx.doi.org/10.1038/s41598-024-53122-z | DOI Listing |
Biosens Bioelectron
January 2025
Key Lab for Special Functional Materials of Ministry of Education, and School of Nanoscience and Materials Engineering, Henan University, 475004, Kaifeng, China. Electronic address:
Influenza A virus (IAV) and influenza B virus (IBV) with similar symptoms of infection caused a serious disease burden and economic losses in annual epidemic season, so it is important to quickly and accurately detect and distinguish between IAV and IBV during influenza season. Herein, the quantum dot microspheres (QDMS) were synthesized and applied to lateral flow immunoassays (LFIA), and a point-of-care (POC) biosensor that can discriminately and simultaneously diagnose IAV and IBV within 10 min was established. A double-sandwich QDMS nanotags was synthesized by immobilizing hydrophobic quantum dots (QDs) with chemical bonding method on a silica sphere template with an outer silica shell protection showed excellent stability and high fluorescence.
View Article and Find Full Text PDFDiscov Nano
January 2025
Nuclear and Energy Research Institute, IPEN, CNEN/SP, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, CEP05508-000, Brazil.
Gold nanoparticles are widely used in biomedical applications due to their unique properties. However, traditional synthesis methods generate contaminants that cause cytotoxicity and compromise the biocompatibility of the nanomaterials. Therefore, green synthesis methods are essential to produce pure and biocompatible nanoparticles, ensuring their effectiveness in biomedical applications.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China.
Traditional drug-delivery methods are limited by low bioavailability and nonspecific drug distribution, resulting in poor therapeutic efficacy and potential risks of toxicity. Mesoporous silica nanoparticles (MSNs) have attracted wide attention as drug-delivery carriers due to their large specific surface area, adjustable pore size, good mechanical strength, good biocompatibility, and rich hydroxyl groups on their surface. In this paper, MSNs were synthesized by a template method, and the morphology and pore structure were regulated.
View Article and Find Full Text PDFAnal Methods
January 2025
CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, 364 002, India.
In this study, magnesium-doped lithium manganese oxide nanoparticles were prepared through a solid-state reaction technique, and their surface was modified with mesoporous silica. The surface-modified material exhibited a significantly enhanced BET surface area from 5.791 to 66.
View Article and Find Full Text PDFCurr Drug Deliv
January 2025
Laboratory of Molecular Medicine, Birla Institute of Technology and Sciences Pilani Hyderabad Campus, 500071, India.
Recent advancements in nanotherapeutics have revolutionized cancer treatment through the integration of diagnostic and therapeutic modalities, known as theranostics. This critical review examines the current landscape of nanotherapeutics for various cancers, such as bladder and head and neck squamous cell carcinoma, highlighting current advancements in nanotherapeutics and challenges. Key approaches discussed include biomimetic smart nanocarriers, polymeric smart nanocarriers, inorganic-based smart nanocarriers, and nanorobots.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!