Electrochemical oxidation of refractory compounds from hydrothermal carbonization process waters.

Chemosphere

Technical University of Darmstadt, Institute IWAR, Franziska-Braun-Str. 7, 64287, Darmstadt, Germany.

Published: March 2024

Hydrothermal carbonization (HTC) is an emerging technology for treating sewage sludge. However, the resulting HTC process water is heavily contaminated with various carbonaceous and nitrogenous components, some of them being non-biodegradable. To implement HTC as a full-scale treatment alternative for sewage sludge, effective concepts for treating process water are crucial. This study focuses on the electrochemical oxidation (EO) using a boron-doped diamond electrode to treat one HTC process waters with different pretreatments: (i) without pretreatment, (ii) biologically pretreated with chemical oxygen demand (COD) removal, (iii) biologically pretreated with nitrification and denitrification. The EO removed COD of all HTC process waters by over 97%, but as COD concentrations decreased, the instantaneous current efficiency (ICE) dropped below 5% and energy consumption increased. The organically bound and refractory nitrogen was completely mineralized and converted to mainly NO-N. After EO of process waters without nitrification/denitrification, nitrogen was present as NO-N with up to 730 mg/L and NH-N with up to 1813 mg/L. Such high ammonium concentrations treatment could be interesting for nitrogen recovery. In addition, the toxicity towards Vibrio fischeri could be reduced to a large extent. The findings suggest that EO after a biological step with COD removal is a viable solution for HTC process water treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.141310DOI Listing

Publication Analysis

Top Keywords

process waters
16
htc process
16
process water
12
electrochemical oxidation
8
hydrothermal carbonization
8
sewage sludge
8
biologically pretreated
8
cod removal
8
process
7
htc
6

Similar Publications

Background: Adjuvants play a crucial role in improving the immunogenicity of various antigens in vaccines. Squalene-in-water emulsions are clinically established vaccine adjuvants that improve immune responses, particularly during a pandemic. Current manufacturing processes for these emulsion adjuvants include microfluidizers and homogenizers and these processes have been used to produce emulsion adjuvants to meet global demands during a pandemic.

View Article and Find Full Text PDF

Molding sand mixtures in the foundry industry are typically composed of fresh and reclaimed sands, water, and additives such as bentonite. Optimizing the control of these mixtures and the recycling of used sand after casting requires an efficient in-line monitoring method, which is currently unavailable. This study explores the potential of an AI-enhanced electrical impedance spectroscopy (EIS) system as a solution.

View Article and Find Full Text PDF

Clustering-Based Thermography for Detecting Multiple Substances Under Large-Scale Floating Covers.

Sensors (Basel)

December 2024

Department of Mechanical & Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.

This study presents a novel approach for monitoring waste substrate digestion under high-density polyethylene (HDPE) geomembranes in sewage treatment plants. The method integrates infrared thermal imaging with a clustering algorithm to predict the distribution of various substrates beneath Traditional outdoor large-scale opaque geomembranes, using solar radiation as an excitation source. The technique leverages ambient weather conditions to assess the thermal responses of HDPE covers.

View Article and Find Full Text PDF

To eliminate the noise interference caused by continuous external environmental disturbances on the rotor signals of a maglev gyroscope, this study proposes a noise reduction method that integrates an adaptive particle swarm optimization variational modal decomposition algorithm with a strategy for error compensation of the trend term in reconstructed signals, significantly improving the azimuth measurement accuracy of the gyroscope torque sensor. The optimal parameters for the variational modal decomposition algorithm were determined using the adaptive particle swarm optimization algorithm, allowing for the accurate decomposition of noisy rotor signals. Additionally, using multi-scale permutation entropy as a criterion for discriminant, the signal components were filtered and summed to obtain the denoised reconstructed signal.

View Article and Find Full Text PDF

This study evaluates the efficacy of twin screw melt granulation (TSMG), and hot-melt extrusion (HME) techniques in enhancing the solubility and dissolution of simvastatin (SIM), a poorly water-soluble drug with low bioavailability. Additionally, the study explores the impact of binary polymer blends on the drug's miscibility, solubility, and in vitro release profile. SIM was processed with various polymeric combinations at a 30% / drug load, and a 1:1 ratio of binary polymer blends, including Soluplus (SOP), Kollidon K12 (K12), Kollidon VA64 (KVA), and Kollicoat IR (KIR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!