Exhaustive exercise decreases tau phosphorylation and modifies biological processes associated with the protein translation and electron transport chain in P301L tau transgenic mice.

Exp Gerontol

Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China. Electronic address:

Published: March 2024

Stress response is a fundamental mechanism for cell survival, providing protection under unfavorable conditions. Mitochondrial stress, in particular, can trigger mitophagy, a process that restores cellular health. Exhaustive exercise (EE) is a form of acute mitochondrial stress. The objective of this current study is to investigate the impact of EE on tau pathology in pR5 mice, as well as the potential underlying mechanisms. To evaluate this, we examined the levels of total and phosphorylated tau in the hippocampus of pR5 mice, both with and without EE treatment. Furthermore, the application of weighted correlation network analysis (WGCNA) was employed to identify protein modules associated with the phenotype following the proteomic experiment. The findings of our study demonstrated a significant decrease in tau phosphorylation levels upon EE treatment, in comparison to the pR5 group. Moreover, the proteomic analysis provided additional insights, revealing that the mitigation of tau pathology was primarily attributed to the modulation of various pathways, such as translation factors and oxidative phosphorylation. Additionally, the analysis of heatmaps revealed a significant impact of EE treatment on the translation process and electron transport chain in pR5 mice. Furthermore, biochemical analysis provided further confirmation that EE treatment effectively modulated the ATP level in pR5 mice. In conclusion, our study suggests that the observed decrease in tau phosphorylation resulting from EE treatment may primarily be attributed to its regulation of the translation process and enhancement of mitochondrial function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2024.112375DOI Listing

Publication Analysis

Top Keywords

pr5 mice
16
tau phosphorylation
12
exhaustive exercise
8
electron transport
8
transport chain
8
mitochondrial stress
8
tau pathology
8
decrease tau
8
analysis provided
8
translation process
8

Similar Publications

Article Synopsis
  • Researchers aim to create a new assay using surface plasmon resonance (SPR) to identify compounds that can detect fibrillar forms of alpha-synuclein and 4-repeat tau, which are important in neurodegenerative diseases.
  • They optimized the SPR protocol to analyze the binding properties of various fluorescent ligands with different fibrils, identifying multiple binding sites on the fibrils and validating findings through immunofluorescence in brain tissue samples.
  • The study suggests that this SPR approach could effectively characterize small molecules for targeting proteinopathies associated with neurodegenerative diseases, improving our understanding of these conditions.
View Article and Find Full Text PDF

JOURNAL/nrgr/04.03/01300535-202508000-00025/figure1/v/2024-09-30T120553Z/r/image-tiff TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon. TAU is missorted and aggregated in an array of diseases known as tauopathies.

View Article and Find Full Text PDF

Human alphaherpesvirus 1 (HSV-1) establishes life-long latency in sensory neurons in trigeminal ganglia (TG), brainstem neurons, and other CNS neurons. Two important segments of the brainstem were examined in this study: principal sensory nucleus of the spinal trigeminal tract (Pr5) because it receives direct afferent inputs from TG, and locus coeruleus (LC) because it is indirectly connected to Pr5 and LC sends axonal projections to cortical structures, which may facilitate viral spread from brainstem to the brain. The only viral gene abundantly expressed during latency is the latency associated transcript (LAT).

View Article and Find Full Text PDF

The significance of transient neuropeptide expression during postnatal brain development is unknown. Here, we show that galanin expression in the ventrobasal thalamus of infant mice coincides with whisker map development and modulates subcortical circuit wiring. Time-resolved neuroanatomy and single-nucleus RNA-seq identified complementary galanin (Gal) and galanin receptor 1 (Galr1) expression in the ventrobasal thalamus and the principal sensory nucleus of the trigeminal nerve (Pr5), respectively.

View Article and Find Full Text PDF

Exhaustive exercise decreases tau phosphorylation and modifies biological processes associated with the protein translation and electron transport chain in P301L tau transgenic mice.

Exp Gerontol

March 2024

Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China. Electronic address:

Stress response is a fundamental mechanism for cell survival, providing protection under unfavorable conditions. Mitochondrial stress, in particular, can trigger mitophagy, a process that restores cellular health. Exhaustive exercise (EE) is a form of acute mitochondrial stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!