Identification of genes and key pathways underlying the pathophysiological association between sarcopenia and chronic obstructive pulmonary disease.

Exp Gerontol

Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China. Electronic address:

Published: March 2024

Purpose: Chronic obstructive pulmonary disease (COPD) patients are likely to develop sarcopenia, while the exact mechanism underlying the association between sarcopenia and COPD is still not clear. This cohort study aims to explore the genes, signaling pathways, and transcription factors (TFs) that are related to the molecular pathogenesis of sarcopenia and COPD.

Methods: According to the strict inclusion criteria, two gene sets (GSE8479 for sarcopenia and GSE76925 for COPD) were obtained from the Gene Expression Omnibus (GEO) platform. Overlapping differentially expressed genes (DEGs) in sarcopenia and COPD were detected, and comprehensive bioinformatics analysis was conducted, including functional annotation, enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), construction of a protein-protein interaction (PPI) network, co-expression analysis, identification and validation of hub genes, and TFs prediction and verification.

Results: In total, 118 downregulated and 92 upregulated common DEGs were detected. Functional analysis revealed that potential pathogenesis involves oxidoreductase activity and ferroptosis. Thirty hub genes were detected, and ATP metabolic process and oxidative phosphorylation were identified to be closely related to the hub genes. Validation analysis revealed that SAA1, C3, and ACSS2 were significantly upregulated, whereas ATF4, PPARGC1A, and MCTS1 were markedly downregulated in both sarcopenia and COPD. In addition, six TFs (NFKB1, RELA, IRF7, SP1, MYC, and JUN) were identified to regulate the expression of these genes, and SAA1 was found to be coregulated by NFKB1 and RELA.

Conclusion: This study uncovers potential common mechanisms of COPD complicated by sarcopenia. The hub gene SAA1 and the NF-κB signaling pathway could be involved, and oxidative phosphorylation and ferroptosis might be important contributors to this comorbidity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2024.112373DOI Listing

Publication Analysis

Top Keywords

sarcopenia copd
12
hub genes
12
sarcopenia
8
association sarcopenia
8
chronic obstructive
8
obstructive pulmonary
8
pulmonary disease
8
analysis revealed
8
oxidative phosphorylation
8
genes
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!