Highly efficient removal of tannic acid from wastewater using biomimetic porous materials.

Environ Res

Institute of Highland Forest Science, Chinese Academy of Forestry. Research Center of Engineering and Technology of Characteristic Forest Resources, Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming, 650223, China. Electronic address:

Published: July 2024

To effectively remove tannic acid (TA) from wastewater, using green and natural materials has attracted increasing attention. Inspired by Galla Chinensis (GC) with high content of TA, this study synthesized a biomimetic porous adsorbent to mimic the GC structure using dialdehyde tapioca starch (DTS) and gelatin (GL). The TA adsorption performance and mechanism of synthetic porous material were investigated. Results revealed that the porous material exhibited a maximum TA adsorption capacity of 1072.01 mg/g, along with a high removal rate of 95.16% under the conditions of a DTS-GL mass ratio of 1:1, DTS aldehyde content of 48.16%, a solid content of 5%, and a pH of 2 at 25 °C. The adsorption of TA by DTS was not affected by water-soluble cationic and anion. The adsorption kinetics of TA on the porous material followed the pseudo-second-order model, and this Langmuir adsorption model (R = 0.9954) which were well described the adsorption of TA by the material, indicating that the adsorption primarily occurred in a monolayer. FTIR, XRD, DSC, TG, XPS, and SEM-EDS were employed to characterize the structure characteristics of the porous material. The cross-linking between DTS and GL by Schiff base reaction imparted a chemical structure could absorb TA by hydrogen bonding. The TA desorption rates of in 30% acetone and 40% ethanol solutions were 88.76% and 91.03%, respectively. The porous material prepared by the GC-inspired approach holds promise as an ideal choice for loading polyphenolic compounds and provides a new perspective for the design and application of bioinspired engineering materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.118252DOI Listing

Publication Analysis

Top Keywords

porous material
20
tannic acid
8
acid wastewater
8
biomimetic porous
8
porous
7
adsorption
7
material
6
highly efficient
4
efficient removal
4
removal tannic
4

Similar Publications

Nanofibrous Hydrogel with Highly Salt-Resistant Radial/Vertical-Combined Structure for Efficient Solar Interfacial Evaporation.

Small

March 2025

College of Textile and Clothing Engineering, National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215021, P. R. China.

Hydrogel-based solar interfacial evaporators, featuring various channels such as random, unidirectional, and radial array, are considered effective for seawater desalination owing to their porous structure, lower evaporation enthalpy, and controllable water transport capacity. However, each individual array structure has its own strengths and limitations, influencing water transportation, thermal management, and salt rejection. By combining the benefits of each array configuration into a single evaporator, the evaporation performance can be maximized.

View Article and Find Full Text PDF

As an emerging catalytic strategy, heterogeneous Piezo-Self-Fenton (EPSF) has demonstrated significant potential in fields such as environmental remediation and biomedicine in recent years. However, the catalytic reactions in this process are complex and diverse, and the understanding of high-entropy catalytic systems remains limited. In this study, we constructed a series of iron-based EPSF materials by incorporating various types of iron sources into MgO@rGO/PVDF-HFP composite piezoelectric films.

View Article and Find Full Text PDF

Traditional dressings often lack adequate skin structure support, which can lead to secondary damage, poor hemostasis, and an increased risk of inflammation due to wound adhesion. In this work, cellulose hydrogels were prepared by physical/chemical double cross-linking a 'sol-gel' strategy and further loaded with Fe to obtain a three-dimensional (3D) porous cellulose/Fe composite hydrogel (cellulose/Fe gel). The obtained cellulose/Fe gel featured a 3D porous nanofiber structure, excellent water absorption/moisture retention performance, and good mechanical stability.

View Article and Find Full Text PDF

Porous titanium implants are becoming an important tool in orthopedic clinical applications. This review provides a comprehensive survey of recent advances in porous titanium implants for orthopedic use. First, the review briefly describes the characteristics of bone and the design requirements of orthopedic implants.

View Article and Find Full Text PDF

Photo-stimulated Polymers have garnered significant attention for their potential applications ranging from optical memory to sensing. Herein, by changing coordination metal and the position of nitrogen atom in pyridine-based photo-stimulated ligand, we successfully synthesised a novel photo-stimulated copper-based MOF (Cu-MOF) using 9,10-bis(di(pyridine-3-yl)methylene)-9,10-dihydroanthracene as the photo-stimulated ligand. Structural analysis revealed a 3D porous architecture, offering a distinct advantage over previously reported 1D coordination polymer using similar photo-stimulated ligand.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!