Imprinted covalent organic frameworks solid-phase microextraction fiber for in vivo monitoring of acidic per- and polyfluoroalkyl substances in live aloe.

Sci Total Environ

Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. Electronic address:

Published: March 2024

Per- and polyfluoroalkyl substances (PFASs) can lead to risks associated with animal and human health through the transfer along food chains. It is confirmed that PFASs can be transported to each part of plants after taken up by the roots. To better elucidate the underlying mechanisms for such exposure, it is highly valuable to develop analytical capabilities for in vivo monitoring of PFASs in live plants. In this work, a novel imprinted covalent organic frameworks (CMIP) solid-phase microextraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry was developed with low limits of detection for six acidic PFASs (0.1-0.3 ng g) and used for in vivo monitoring in live aloe. The CMIP coating shows good precision (RSD of intra and inter ≤9.6 % and 10.2 %, respectively) and possesses much higher extraction efficiency than the commercial coatings. After cultivating aloe in soil spiked PFASs, the in vivo assays gave a wealth of information, including steady-state concentrations, translocation factors, elimination rate constants, and half-life of PFASs. The in vivo tracing method for live plants can provide much needed and unique information to evaluate the risk of PFASs, which are very important for the safety of agriculture production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.170645DOI Listing

Publication Analysis

Top Keywords

vivo monitoring
12
imprinted covalent
8
covalent organic
8
organic frameworks
8
solid-phase microextraction
8
per- polyfluoroalkyl
8
polyfluoroalkyl substances
8
live aloe
8
live plants
8
pfass vivo
8

Similar Publications

Background: A biodegradable nonwoven fabric that can be used to extract adipose-derived stem cells (ADSCs) from adipose tissue slices was developed, which were cultured rapidly without enzymatic treatment. The extracted and cultured ADSCs remain on the nonwoven fabric and form a thick cell sheet. The aim was to use the thick cell sheet as a treatment by transplanting it into the living body.

View Article and Find Full Text PDF

Pythiosis, a rare and formidable infectious disease caused by , is characterized by profound uncertainties in achieving definitive diagnoses, suboptimal outcomes, and an exceptionally high mortality rate. Here, we present a rare case of human spinal pythiosis in southern China. With advanced metagenomic sequencing technology, was pinpointed as the causative pathogen.

View Article and Find Full Text PDF

First Clinical Application of Aztreonam-Avibactam in Treating Carbapenem-Resistant Enterobacterales: Insights from Therapeutic Drug Monitoring and Pharmacokinetic Simulations.

J Pers Med

November 2024

Department of Anesthesiology and Intensive Care Medicine, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.

: A novel fixed combination of aztreonam (ATM) and avibactam (AVI) offers promising potential to treat infections with carbapenem-resistant (CRE) producing metallo-β-lactamases (MBL). This study aimed to assess the accuracy of population pharmacokinetic (PK) models for ATM-AVI in predicting in vivo concentrations in a critically ill patient with CRE infection during its first clinical use. : A 70-year-old male with septic shock due to hospital-acquired pneumonia (HAP) caused by MBL-producing was treated with ATM-AVI.

View Article and Find Full Text PDF

Hyaluronic acid-based hydrogels are emerging as highly versatile materials for cost-effective biosensors, capable of sensitive chemical and biological detection. These hydrogels, functionalized with specific groups, exhibit sensitivity modulated by factors such as temperature, pH, and analyte concentration, allowing for a broad spectrum of applications. This study presents a patent-centered overview of recent advancements in hyaluronic acid hydrogel biosensors from 2003 to 2023.

View Article and Find Full Text PDF

Unlabelled: enterica serotype Reading has recently been identified as a significant foodborne pathogen from contaminated poultry products. There is a critical need for close monitoring of this newly emerged pathogen. This study developed bioluminescent strains of Reading for real-time pathogen tracking using bioluminescence imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!