Adiponectin secretion by perivascular adipose tissue supports impaired vasodilation in a mouse model of accelerated vascular smooth muscle cell and adipose tissue aging.

Vascul Pharmacol

Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands. Electronic address:

Published: March 2024

Objective: Perivascular adipose tissue (PVAT) function during aging has not been investigated in detail so far and its effect on vasodilation remains to be fully elucidated. The aim of this study was to investigate endothelium-dependent vasodilation of thoracic aorta in a mouse model of accelerated, selective vascular smooth muscle and PVAT aging, induced by SM22α-Cre-driven genetic deletion of the endonuclease ERCC1 (SMC-KO mice) versus healthy littermates (LM). We hypothesized that PVAT enhances vasodilation in LM, possibly through adiponectin secretion, which might be compromised in SMC-KO animals.

Methods: Thoracic aorta was isolated from SMC-KO animals and LM and segments with and without PVAT were mounted in wire myography setups. The endothelium-dependent vasodilation was assessed via acetylcholine dose-response curves and pathway contribution was studied. Moreover, adiponectin secretion was measured after stimulating the aortic segments with PVAT with acetylcholine.

Results: Adiponectin, secreted by PVAT, led to increased NO-contribution to endothelium-dependent vasodilation in healthy LM, although this did not increase maximum relaxation due to loss of EDH. Endothelium-dependent vasodilation was decreased in SMC-KO animals due to reduced NO-contribution and complete EDH loss. Despite strong lipodystrophy the PVAT partially compensated for lost vasodilation in SMC-KO. LM PVAT contained acetylcholinesterase that attenuated acetylcholine responses. This was lost in SMC-KO.

Conclusions: PVAT-derived adiponectin is able to partially compensate for age-related decline in NO-mediated vasodilation, even during strong lipodystrophy, in conditions of absence of compensating EDH. In aorta with healthy PVAT acetylcholinesterase modulates vascular tone, but this is lost during aging, further compensating for decreased acetylcholine responsiveness. Thus, preservation of adiponectin levels, through relatively increased production in lipodystrophic PVAT, and reduction of cholinesterase might be regulatory mechanisms of the PVAT to preserve cholinergic vasodilation during aging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vph.2024.107281DOI Listing

Publication Analysis

Top Keywords

endothelium-dependent vasodilation
16
adiponectin secretion
12
adipose tissue
12
pvat
11
vasodilation
10
perivascular adipose
8
mouse model
8
model accelerated
8
vascular smooth
8
smooth muscle
8

Similar Publications

Hydrogen sulfide (HS) is a gasotransmitter that modulates vascular tone, causing either vasodilation or vasoconstriction depending on the vascular bed, species, and experimental conditions. The cold-sensitive transient receptor potential ankyrin-1 (TRPA1) channel mediates HS-induced effects; however, its contribution to the vasomotor responses of different arteries at different temperatures has remained unclear. Here, we aimed to fill this gap by comparing the effects of sodium sulfide (NaS), which is a fast-releasing HS donor, on the isolated carotid and tail skin arteries of rats and mice at cold and normal body temperature with wire myography.

View Article and Find Full Text PDF

Cinnamic acid lowers blood pressure and reverses vascular endothelial dysfunction in rats.

J Food Drug Anal

December 2024

Cardiovascular Research Group, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad-22060, KP, Pakistan.

Cinnamic acid (CA) possesses important cardiovascular effects such as cardioprotective, antiatherogenic, antihyperlipidemic and antioxidant, which predicts its potential role in the treatment of hypertension. The study was executed to investigate the antihypertensive potential of CA in Sprague Dawley (SD) rats followed by evaluation in diverse vascular preparations. Invasive blood pressure monitoring technique was used in normotensive and hypertensive rats, under anesthesia.

View Article and Find Full Text PDF

Background: Adults with congenital heart disease (ACHD) can face a lifelong risk of premature cardiovascular events. Endothelial dysfunction and arterial stiffness may be some of the key mechanisms involved. Early identification of endothelial damage in ACHD could be crucial to mitigate the adverse events.

View Article and Find Full Text PDF

[Protection of vasodilatory function in rats with post-infarction heart failure by salvianolic acid B via modulating Piezo1 channel].

Zhongguo Zhong Yao Za Zhi

October 2024

Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases Beijing 100091, China Heilongjiang University of Chinese Medicine Harbin 150040, China.

To explore the regulation of vasodilatory function in rats with post-infarction heart failure by salvianolic acid B(Sal-B) based on the mechanosensitive ion channel, namely Piezo1. A post-infarction heart failure model of rats was prepared by ligation of the left anterior descending coronary artery. After successful modeling, the rats were randomly divided into the model group, Sal-B group(0.

View Article and Find Full Text PDF

CEACAM1 in vascular homeostasis and inflammation.

Eur J Clin Invest

December 2024

Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany.

Introduction: The glycoprotein Carcinoembryonic Antigen-related Cell Adhesion Molecule 1 (CEACAM1), also known as CD66a, is a member of the immunoglobulin superfamily. It is expressed in a variety of tissues including epithelial, immune, as well as endothelial cells, and is crucial to diverse physiological and pathological mechanisms. This review aims to provide a comprehensive understanding of CEACAM1's multifaceted roles in vascular biology and inflammatory processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!