Gold-copper-doped lanthanide luminescent metal-organic backbone induced self-enhanced molecularly imprinted ECL sensors for ultra-sensitive detection of chlorpyrifos.

Food Chem

School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China. Electronic address:

Published: June 2024

Herein, a self-enhanced molecularly imprinted polymer luminescence (MIP-ECL) sensing platform based on gold-copper doped Tb-MOFs (Au@Cu:Tb-MOFs) was constructed for ultra-sensitive detection of chlorpyrifos (CPF). In this work, Au@Cu:Tb-MOFs as co-reaction promoters greatly improve the ECL emission signal, while Au@Cu:Tb-MOFs were used as cathode emitters. And chlorpyrifos and 4,7-bis(thiophene-2-yl)benzo [c][1,2,5] thiadiazole were electropolymerized on electrode surface to form MIP, where this films with thiophene derivatives could greatly improve ECL signal. Notably, the introduction of MIP as recognition elements enabled specific identification of target analytes, in which molecular docking technique validated target analyte and functional monomers are tightly bound through Pi-alkyl interaction. As the concentration of CPF increases, the ECL signal gradually decreases, showing a good linear relationship in the range of 0.1-10 pg/mL with a low detection limit (LOD) of 0.029 pg/mL. Moreover, actual sample testing experiment of this method displayed a special correlation in organophosphorus detection and development potential in actual sample analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.138533DOI Listing

Publication Analysis

Top Keywords

self-enhanced molecularly
8
molecularly imprinted
8
ultra-sensitive detection
8
detection chlorpyrifos
8
greatly improve
8
improve ecl
8
ecl signal
8
actual sample
8
gold-copper-doped lanthanide
4
lanthanide luminescent
4

Similar Publications

Immunotherapy has received widespread attention for its effective and long-term tumor-eliminating ability. However, for immunogenic "cold" tumors, such as prostate cancer (PCa), the low immunogenicity of the tumor itself is a serious obstacle to efficacy. Here, this work reports a strategy to enhance PCa immunogenicity by triggering cascade self-enhanced ferroptosis in tumor cells, turning the tumor from "cold" to "hot".

View Article and Find Full Text PDF

Gold-copper-doped lanthanide luminescent metal-organic backbone induced self-enhanced molecularly imprinted ECL sensors for ultra-sensitive detection of chlorpyrifos.

Food Chem

June 2024

School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China. Electronic address:

Herein, a self-enhanced molecularly imprinted polymer luminescence (MIP-ECL) sensing platform based on gold-copper doped Tb-MOFs (Au@Cu:Tb-MOFs) was constructed for ultra-sensitive detection of chlorpyrifos (CPF). In this work, Au@Cu:Tb-MOFs as co-reaction promoters greatly improve the ECL emission signal, while Au@Cu:Tb-MOFs were used as cathode emitters. And chlorpyrifos and 4,7-bis(thiophene-2-yl)benzo [c][1,2,5] thiadiazole were electropolymerized on electrode surface to form MIP, where this films with thiophene derivatives could greatly improve ECL signal.

View Article and Find Full Text PDF

Environmental pollution caused by tetracycline antibiotics is a major concern of global public health. Here, a novel and portable molecularly imprinted electrochemiluminescence (MIECL) sensor based on smartphones for highly sensitive detection of chlortetracycline (CTC) has been successfully established. The high-performance ECL emitter of biomass carbon (BC) encapsulated CdZnTeS (CdZnTeS@BC) was successfully synthesized by hydrothermal.

View Article and Find Full Text PDF

Here, a novel and portable machine learning-assisted smartphone-based visual molecularly imprinted ratiometric electrochemiluminescence (MIRECL) sensing platform was constructed for highly selective sensitive detection of 2,4-Dichlorophenoxyacetic acid (2,4-D) for the first time. Te doped CdS-coated MnO (Te-CdS@MnO) with catalase-like activity served as cathode-emitter, while luminol as anode luminophore accompanied HO as co-reactant, and Te-CdS@MnO decorated molecularly imprinted polymers (MIPs) as recognition unit, respectively. Molecular models were constructed and MIP band and binding energies were calculated to elucidate the luminescence mechanism and select the best functional monomers.

View Article and Find Full Text PDF

Molecularly engineered carrier-free co-delivery nanoassembly for self-sensitized photothermal cancer therapy.

J Nanobiotechnology

September 2021

Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.

Background: Photothermal therapy (PTT) has been extensively investigated as a tumor-localizing therapeutic modality for neoplastic disorders. However, the hyperthermia effect of PTT is greatly restricted by the thermoresistance of tumor cells. Particularly, the compensatory expression of heat shock protein 90 (HSP90) has been found to significantly accelerate the thermal tolerance of tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!