Intramammary administration of lipopolysaccharides at parturition enhances immunoglobulin concentration in goat colostrum.

Animal

IUSA-ONEHEALTH 4, Animal Production and Biotechnology, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, Campus Montaña Cardones, s/n, 35413 Arucas, Spain.

Published: February 2024

In newborn ruminants, transfer of passive immunity is essential to obtain protection against pathogens. This study aimed to increase the permeability of the blood-milk barrier using intramammary lipopolysaccharides (LPS) in goats at parturition to modulate colostrum composition. Twenty multiparous Majorera dairy goats were randomly allocated in one of the two experimental groups. The LPS group (n = 10) received an intramammary administration (IA) of saline (2 mL) containing 50 µg of LPS from Escherichia coli (O55:B5) in each half udder at parturition. The control group (n = 10) received an IA of saline (2 mL). Rectal temperature (RT) was recorded, and a blood sample was collected at parturition (before IA). In addition, RT was measured, and blood and colostrum/milk samples were collected on day (d) 0.125 (3 hours), 0.5 (12 hours), 1, 2, 4, 7, 15 and 30 relative to the IA. Goat plasma immunoglobulin G (IgG) and M (IgM) and serum β-hydroxybutyrate, glucose, calcium, free fatty acids, lactate dehydrogenase and total protein concentrations were determined. Colostrum and milk yields as well as chemical composition, somatic cell count (SCC), IgG and IgM concentrations were measured. The MIXED procedure (SAS 9.4) was used, and the model included the IA, time, and the interaction between both fixed effects. Statistical significance was set as P < 0.05. Goats from the LPS group showed higher RT on d 0.125, 0.5 and 4 relative to the IA compared to the control group (P = 0.007). Goat serum biochemical variables and plasma IgG and IgM concentrations were not affected by the IA. Colostrum and milk yield as well as chemical composition were not affected by the IA, except for milk lactose percentage that was lower in the LPS group compared to the control group (4.3 ± 0.08 and 4.6 ± 0.08%, respectively P = 0.026). Colostrum SCC was higher in the LPS group than in the control group (3.5 ± 0.09 and 3.1 ± 0.09 cells × 10/mL, respectively; P = 0.011). Similarly, milk SCC increased in the LPS group compared to the control group (P = 0.004). The LPS group showed higher IgG (P = 0.044) and IgM (P = 0.037) concentrations on colostrum than the control group (31.9 ± 4.8 and 19.0 ± 4.8 mg/mL, 0.8 ± 0.08 and 0.5 ± 0.08 mg/mL, respectively). No differences in milk IgG and IgM concentrations between groups were observed. In conclusion, the IA of LPS at parturition increases RT, SCC and IgG and IgM concentrations in colostrum without affecting either yield or chemical composition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.animal.2024.101082DOI Listing

Publication Analysis

Top Keywords

intramammary administration
8
group n = 10
8
n = 10 received
8
saline 2 ml
8
igg igm
8
administration lipopolysaccharides
4
parturition
4
lipopolysaccharides parturition
4
parturition enhances
4
enhances immunoglobulin
4

Similar Publications

Understanding the bovine mastitis co-infections: Coexistence with Enterobacter alters S. aureus antibiotic susceptibility and virulence phenotype.

Res Vet Sci

January 2025

Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), CONICET-UNVM, Villa María, Córdoba, Argentina; Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas de la Universidad Nacional Villa María (IAPCByA-UNVM), Villa María, Córdoba, Argentina. Electronic address:

The World Health Organization recently reported an alarming evolution and spread of antibiotic resistance, a global risk factor recognized as a One Health challenge. In veterinary, the general lack of clear treatment guidelines often leads to antibiotic misuse. Bovine mastitis is responsible for major economic losses and the main cause of antibiotic administration in the dairy industry, favoring the emergence of multi-resistant phenotypes.

View Article and Find Full Text PDF

The cure rate of Staphylococcus aureus mastitis by conventional antibiotic therapy is very poor. Diflunisal (DIF), a difluorophenol derivative of salicylic acid, is reported to have strong anti-bacterial and anti-inflammatory effects against S. aureus infection.

View Article and Find Full Text PDF

In vivo evaluation of selenium-tellurium based nanoparticles as a novel treatment for bovine mastitis.

J Anim Sci Biotechnol

December 2024

Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic.

Background: Bovine mastitis is one of the main causes of reduced production in dairy cows. The infection of the mammary gland is mainly caused by the bacterium Staphylococcus aureus, whose resistant strains make the treatment of mastitis with conventional antibiotics very difficult and result in high losses. Therefore, it is important to develop novel therapeutic agents to overcome the resistance of mastitis-causing strains.

View Article and Find Full Text PDF

A randomized controlled trial was conducted in Kenya in 2020 with the objectives being to assess compliance of smallholder dairy farmers (SDF) with farm-specific mastitis and cow comfort recommendations, to determine factors associated with compliance, and to determine the impact of these recommendations in reducing cases of subclinical mastitis. A total of 114 SDFs (124 cows) were recruited into the study and randomly allocated into intervention (74 farms) and control (40 farms) groups during the first farm visit. Existing farm-level mastitis control and cow comfort strategies were assessed in both intervention and control farms.

View Article and Find Full Text PDF

The microbial ecology in mastitis involves the interactions between bacteria and the mammary gland environment. Poor mastitis control, for which understanding these microbial relationships is crucial, increases the risk of mastitis and co-infections. The aim of this study was to determine the pathogenesis and bacterial ecology of murine mammary glands following intramammary infection (IMI) with (AU), (SA), and four isolates of selected non-aureus staphylococci (NAS), as well as co-infections of AU or SA with NAS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!