Ultrafast power Doppler imaging (uPDI) can significantly increase the sensitivity of resolving small vascular paths in ultrasound. While clutter filtering is a fundamental and essential method to realize uPDI, it commonly uses singular value decomposition (SVD) to suppress clutter signals and noise. However, current SVD-based clutter filters using two cutoffs cannot ensure sufficient separation of tissue, blood, and noise in uPDI. This article proposes a new competitive swarm-optimized SVD clutter filter to improve the quality of uPDI. Specifically, without using two cutoffs, such a new filter introduces competitive swarm optimization (CSO) to search for the counterparts of blood signals in each singular value. We validate the CSO-SVD clutter filter on public in vivo datasets. The experimental results demonstrate that our method can achieve higher contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and blood-to-clutter ratio (BCR) than the state-of-the-art SVD-based clutter filters, showing a better balance between suppressing clutter signals and preserving blood signals. Particularly, our CSO-SVD clutter filter improves CNR by 0.99 ± 0.08 dB, SNR by 0.79 ± 0.08 dB, and BCR by 1.95 ± 0.03 dB when comparing a spatial-similarity-based SVD clutter filter in the in vivo dataset of rat brain bolus.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2024.3362967DOI Listing

Publication Analysis

Top Keywords

clutter filter
16
svd clutter
12
clutter
10
competitive swarm
8
clutter filtering
8
ultrafast power
8
power doppler
8
doppler imaging
8
clutter signals
8
svd-based clutter
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!