In this study, we developed a novel methodology involving a base-controlled, rongalite-mediated reductive/aldol reaction, followed by cyclization of isatylidene malononitriles/cyanoacetates, resulting in the synthesis of spiro[2,3-dihydrofuran-3,3'-oxindole]. Additionally, we have disclosed a rongalite-mediated dimerization process for isatylidene malononitriles, yielding dispiro[cyclopent-3'-ene]bisoxindole. The utilization of rongalite in this reaction serves a dual purpose, acting both as a reducing agent and a C1 synthon. The developed approach has several advantages like a simple reaction setup, a wide substrate scope, requiring less time, using water as a green solvent, no metal or catalyst is required and products can be easily isolated filtration with excellent yields under mild reaction conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3ob01794j | DOI Listing |
Org Biomol Chem
February 2024
Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 410008, India.
In this study, we developed a novel methodology involving a base-controlled, rongalite-mediated reductive/aldol reaction, followed by cyclization of isatylidene malononitriles/cyanoacetates, resulting in the synthesis of spiro[2,3-dihydrofuran-3,3'-oxindole]. Additionally, we have disclosed a rongalite-mediated dimerization process for isatylidene malononitriles, yielding dispiro[cyclopent-3'-ene]bisoxindole. The utilization of rongalite in this reaction serves a dual purpose, acting both as a reducing agent and a C1 synthon.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!