Deep Feedforward Neural Networks (FNNs) with skip connections have revolutionized various image recognition tasks. In this paper, we propose a novel architecture called bidirectional FNN (BiFNN), which utilizes skip connections to aggregate features between its forward and backward paths. The BiFNN accepts any FNN as a plugin that can incorporate any general FNN model into its forward path, introducing only a few additional parameters in the cross-path connections. The backward path is implemented as a nonparameter layer, utilizing a discretized form of the neural memory Ordinary Differential Equation (nmODE), which is named [Formula: see text]-net. We provide a proof of convergence for the [Formula: see text]-net and evaluate its initial value problem. Our proposed architecture is evaluated on diverse image recognition datasets, including Fashion-MNIST, SVHN, CIFAR-10, CIFAR-100, and Tiny-ImageNet. The results demonstrate that BiFNNs offer significant improvements compared to embedded models such as ConvMixer, ResNet, ResNeXt, and Vision Transformer. Furthermore, BiFNNs can be fine-tuned to achieve comparable performance with embedded models on Tiny-ImageNet and ImageNet-1K datasets by loading the same pretrained parameters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1142/S0129065724500151 | DOI Listing |
Phys Rev Lett
December 2024
California Institute of Technology, Division of Chemistry and Chemical Engineering, Pasadena, California 91125, USA.
We introduce a change of perspective on tensor network states that is defined by the computational graph of the contraction of an amplitude. The resulting class of states, which we refer to as tensor network functions, inherit the conceptual advantages of tensor network states while removing computational restrictions arising from the need to converge approximate contractions. We use tensor network functions to compute strict variational estimates of the energy on loopy graphs, analyze their expressive power for ground states, show that we can capture aspects of volume law time evolution, and provide a mapping of general feed-forward neural nets onto efficient tensor network functions.
View Article and Find Full Text PDFThe hippocampus forms memories of our experiences by registering processed sensory information in coactive populations of excitatory principal cells or ensembles. Fast-spiking parvalbumin-expressing inhibitory neurons (PV INs) in the dentate gyrus (DG)-CA3/CA2 circuit contribute to memory encoding by exerting precise temporal control of excitatory principal cell activity through mossy fiber-dependent feed-forward inhibition. PV INs respond to input-specific information by coordinating changes in their intrinsic excitability, input-output synaptic-connectivity, synaptic-physiology and synaptic-plasticity, referred to here as experience-dependent PV IN plasticity, to influence hippocampal functions.
View Article and Find Full Text PDFThis paper breaks away from traditional approaches that merely emulate digital neural networks. Using Mach-Zehnder interferometer (MZI) networks as a case study, we explore the impact of the inherent properties of analog computation on performance and identify the characteristics that optical neural networks (ONNs) components should possess to better adapt to these specific properties. Specifically, we examine the influence of analog computation on bias power and activation functions, as well as the impact of optical pruning on ONN's performance.
View Article and Find Full Text PDFThe acoustic signals generated during the laser paint removal process contain valuable information that reflects the state of paint removal. However, it is often overshadowed by complex environmental noise, posing significant challenges for real-time monitoring of paint removal based on acoustic signals. This paper introduces a real-time acoustic monitoring method for laser paint removal using deep learning techniques for the first time.
View Article and Find Full Text PDFProg Addit Manuf
July 2024
Empa Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.
Fast and accurate representation of heat transfer in laser powder-bed fusion of metals (PBF-LB/M) is essential for thermo-mechanical analyses. As an example, it benefits the detection of thermal hotspots at the design stage. While traditional physics-based numerical approaches such as the finite element (FE) method are applicable to a wide variety of problems, they are computationally too expensive for PBF-LB/M due to the space- and time-discretization requirements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!