The purpose of this study was to systematically review the development, performance, and applicability of prognostic models developed for predicting poor events in patients with heart failure with preserved ejection fraction (HFpEF). Databases including Embase, PubMed, Web of Science Core Collection, the Cochrane Library, China National Knowledge Infrastructure, Wan Fang, Wei Pu, and China Biological Medicine were queried from their respective dates of inception to 1 June 2023, to examine multivariate models for prognostic prediction in HFpEF. Both forward and backward citations of all studies were included in our analysis. Two researchers individually used the Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies (CHARMS) checklist to extract data and assess the quality of the models using the Predictive Mode Bias Risk Assessment Tool (PROBAST). Among the 6897 studies screened, 16 studies derived and/or validated a total of 39 prognostic models. The sample size ranges for model development, internal validation, and external validation are 119 to 5988, 152 to 1000, and 30 to 5957, respectively. The most frequently employed modelling technique was Cox proportional hazards regression. Six studies (37.50%) conducted internal validation of models; bootstrap and k-fold cross-validation were the commonly used methods for internal validation of models. Ten of these models (25.64%) were validated externally, with reported the c-statistic in the external validation set ranging from 0.70 to 0.96, while the remaining models await external validation. The MEDIA echo score and I-PRESERVE-sudden cardiac death prediction mode have been externally validated using multiple cohorts, and the results consistently show good predictive performance. The most frequently used predictors identified among the models were age, n-terminal pro-brain natriuretic peptide, ejection fraction, albumin, and hospital stay in the last 5 months owing to heart failure. All study predictor domains and outcome domains were at low risk of bias, high or unclear risk of bias of all prognostic models due to underreporting in the area of analysis. All studies did not evaluate the clinical utility of the prognostic models. Predictive models for predicting prognostic outcomes in patients with HFpEF showed good discriminatory ability but their utility and generalization remain uncertain due to the risk of bias, differences in predictors between models, and the lack of clinical application studies. Future studies should improve the methodological quality of model development and conduct external validation of models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11098651 | PMC |
http://dx.doi.org/10.1002/ehf2.14696 | DOI Listing |
J Clin Invest
January 2025
Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, United States of America.
Background: Myotonic dystrophy type 1 (DM1) is a multisystemic, CTG repeat expansion disorder characterized by a slow, progressive decline in skeletal muscle function. A biomarker correlating RNA mis-splicing, the core pathogenic disease mechanism, and muscle performance is crucial for assessing response to disease-modifying interventions. We evaluated the Myotonic Dystrophy Splice Index (SI), a composite RNA splicing biomarker incorporating 22 disease-specific events, as a potential biomarker of DM1 muscle weakness.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
Importance: Secondary lymphedema is a common, harmful side effect of breast cancer treatment. Robust risk models that are externally validated are needed to facilitate clinical translation. A published risk model used 5 accessible clinical factors to predict the development of breast cancer-related lymphedema; this model included a patient's mammographic breast density as a novel predictive factor.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
Liver hepatocellular carcinoma (LIHC) is a highly heterogeneous disease, necessitating the discovery of novel biomarkers to enhance individualized treatment approaches. Recent research has shown the significant involvement of ubiquitin-related genes (UbRGs) in the progression of LIHC. However, the prognostic value of UbRGs in LIHC has not been investigated.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Thyroid Breast Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
Objective: Despite the identification of various prognostic factors for anaplastic thyroid carcinoma (ATC) patients over the years, a precise prognostic tool for these patients is still lacking. This study aimed to develop and validate a prognostic model for predicting survival outcomes for ATC patients using random survival forests (RSF), a machine learning algorithm.
Methods: A total of 1222 ATC patients were extracted from the Surveillance, Epidemiology, and End Results (SEER) database and randomly divided into a training set of 855 patients and a validation set of 367 patients.
Eur Radiol
January 2025
Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
Purpose: To evaluate the prognostic value of interim [F]Fluorodeoxyglucose positron emission tomography/computed tomography ([F]FDG PET/CT) after immunotherapy-based systemic therapies in extranodal natural killer/T-cell lymphoma (ENKTL).
Patients And Methods: We retrospectively recruited 133 newly diagnosed nasal-type ENKTL patients who underwent interim [F]FDG PET/CT scans after 2-4 cycles of immunotherapy-based treatments. Interim PET/CT was interpreted by maximum standardized uptake value (SUV), Deauville 5-point scale (DS), and early treatment response.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!