The comprehensive control of hydroxyapatite (HAp), involving morphological and structural variations, particle sizes, and defect formations, has garnered considerable attention for its versatile functionalities, rendering it applicable in diverse contexts. This work examined the shape, structure and optical characteristics, and defect formation in hydroxyapatite (HAp) extracted from Nile tilapia () scales with various pre-treatments through experiments and density functional theory (DFT) calculations. Utilizing scanning electron microscopy, our findings revealed that dried fish scales (FS-D) exhibited a layered pattern of collagen fibers, while boiled fish scales (FS-B) had smoother surfaces and significantly reduced collagen content. After calcination, the FS-D sample produced nanorods with an average length of 150 ± 44 nm, whereas the FS-B samples yielded agglomerated spherical particles whose size increased with the rising calcining temperature. In-depth analysis through X-ray diffraction and Fourier-transform infrared spectroscopy confirmed the presence of biphasic calcium phosphates in the FS-B samples, while the FS-D sample presented a pure HAp phase. The boiled fish scale calcined at 800 °C (FS-B800) exhibited an optical band gap () of 5.50 eV, whereas the dried fish scale calcined at 800 °C (FS-D800) showed two values of 2.87 and 3.97 eV, as determined by UV-visible spectroscopy. DFT calculations revealed that the band gap of 3.97 eV correlated with OH vacancies, while that of 2.87 eV indicated Mn-substituted HAp, explaining the blue powder. The value for the white powder resembled pure HAp, S and Cl substituted OH vacancies, and various cations substituting Ca sites of HAp. Different pre-treatment procedures influence the characteristics of HAp, offering opportunities for applications in bone replacement and scaffolds for bone tissue engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10839550PMC
http://dx.doi.org/10.1039/d3ra07556gDOI Listing

Publication Analysis

Top Keywords

formation hydroxyapatite
8
extracted nile
8
nile tilapia
8
tilapia scales
8
hydroxyapatite hap
8
dft calculations
8
dried fish
8
fish scales
8
boiled fish
8
fs-d sample
8

Similar Publications

Bacterial nanocellulose (BNC) has attracted considerable attention in the field of biomedical engineering due to its potential for use in bone regeneration applications. The present study investigates the in vitro and in vivo efficacy of bacterial nanocellulose (BNC) combined with calcium and cerium ions (BNC-Ce:CaP) in bone regeneration applications. XRD analysis confirmed the presence of monetite and hydroxyapatite phases in BNC-CaP, while BNC-Ce:CaP revealed an additional brushite phase.

View Article and Find Full Text PDF

Objective: This study aimed to investigate and compare the histological response of rabbit dental pulp after direct pulp capping with 3 different materials: mineral trioxide aggregate (MTA), nanoparticles of fluorapatite (Nano-FA), and nanoparticles of hydroxyapatite (Nano-HA) after 4 and 6-week time intervals.

Material And Methods: A total of 72 upper and lower incisor teeth from 18 rabbits were randomly categorized into 3 groups)24 incisors from six rabbits each. MTA Group: teeth were capped with MTA.

View Article and Find Full Text PDF

Long-Term Natural Hydroxyapatite and Synthetic Collagen Hydroxyapatite Enhance Bone Regeneration and Implant Fixation Similar to Allograft in a Sheep Model of Implant Integration.

Calcif Tissue Int

January 2025

Orthopaedic Research Laboratory, Department of Orthopedic Surgery and Traumatology, Odense University Hospital & Department of Clinical Research, University of Southern Denmark, V18-812B-1, Etage 1, Bygning 45.4, Nyt Sund, SDU Campus 5230, Odense, Denmark.

There is an increasing demand for a suitable bone substitute to replace current clinical gold standard autografts or allografts. Majority of previous studies have focused on the early effects of substitutes on bone formation, while information on their long-term efficacies remains limited. This study investigated the efficacies of natural hydroxyapatite (nHA) derived from oyster shells and synthetic hydroxyapatite mixed with collagen (COL/HA) or chitosan (CS/HA) on bone regeneration and implant fixation in sheep.

View Article and Find Full Text PDF

Remineralization is a common strategy for the repair of early demineralized tooth enamels, but the harsh dynamic oral environment often hampers its efficacy. Rapid remineralization is expected to address this challenge, however, the stabilizers of remineralization materials often resist their transformation required for repair. Here, by dissolving the ions of calcium and phosphate in glycerol-dominant solvents, we obtain the calcium phosphate clusters (1-2 nm), which are stabilized by glycerol (with high viscosity and affinity to clusters), but can perform a fast enamel repair via the water-triggered transformation in both static and dynamic environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!