Carbon quantum dots in bioimaging and biomedicines.

Front Bioeng Biotechnol

Department of Chemistry and Applied Biosciences, Zurich, Switzerland.

Published: January 2024

Carbon quantum dots (CQDs) are gaining a lot more attention than traditional semiconductor quantum dots owing to their intrinsic fluorescence property, chemical inertness, biocompatibility, non-toxicity, and simple and inexpensive synthetic route of preparation. These properties allow CQDs to be utilized for a broad range of applications in various fields of scientific research including biomedical sciences, particularly in bioimaging and biomedicines. CQDs are a promising choice for advanced nanomaterials research for bioimaging and biomedicines owing to their unique chemical, physical, and optical properties. CQDs doped with hetero atom, or polymer composite materials are extremely advantageous for biochemical, biological, and biomedical applications since they are easy to prepare, biocompatible, and have beneficial properties. This type of CQD is highly useful in phototherapy, gene therapy, medication delivery, and bioimaging. This review explores the applications of CQDs in bioimaging and biomedicine, highlighting recent advancements and future possibilities to increase interest in their numerous advantages for therapeutic applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10841552PMC
http://dx.doi.org/10.3389/fbioe.2023.1333752DOI Listing

Publication Analysis

Top Keywords

quantum dots
12
bioimaging biomedicines
12
carbon quantum
8
bioimaging
5
cqds
5
dots bioimaging
4
biomedicines carbon
4
dots cqds
4
cqds gaining
4
gaining lot
4

Similar Publications

High-performance, environmentally friendly indium phosphide (InP)-based quantum dots (QDs) are urgently needed to meet the demands of rapidly evolving display and lighting technologies. By adopting the highly efficient and cost-effective one-pot method and utilizing aluminum isopropoxide (AIP) as the Al source, a series of Al-doped InP/(Al)ZnS QDs with emission maxima ranging from 480 to 627 nm were synthesized. The photoluminescence quantum yield (PLQY) of the blue, green, yellow, orange, and red QDs, with emission peaks at 480, 509, 560, 600, and 627 nm, reached 34%, 62%, 86%, 96%, and 85%, respectively.

View Article and Find Full Text PDF

Developing hybrid fluorescence (FL)/room-temperature phosphorescent (RTP) materials in dry-state, aqueous, and organic solvents holds paramount importance in broadening their applications. However, it is extremely challenging due to dissolved oxygen and solvent-assisted relaxation causing RTP quenching in an aqueous environment and great dependence on SiO-based materials. Herein, an efficient endogenetic carbon dot (CD) strategy within melamine-formaldehyde (MF) microspheres to activate RTP of CDs has been proposed through the pyrolysis of isophthalic acid (IPA) molecules and branched-chain intra-microspheres.

View Article and Find Full Text PDF

Tunable Quantum Confinement in Individual Nanoscale Quantum Dots via Interfacial Engineering.

ACS Nano

December 2024

Center for Advanced Quantum Studies, School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China.

Introducing quantum confinement has shown promise to enable control of charge carriers. Although recent advances make it possible to realize confinement from semiclassical regime to quantum regime, achieving control of electronic potentials in individual nanoscale quantum dots (QDs) has remained challenging. Here, we demonstrate the ability to tune quantum confined states in individual nanoscale graphene QDs, which are realized by inserting nanoscale monolayer WSe islands in graphene/WSe heterostructures via interfacial engineering.

View Article and Find Full Text PDF

Blue Quantum Dot Light-Emitting Diodes toward Full-Color Displays: Materials, Devices, and Large-Scale Fabrication.

Nano Lett

December 2024

Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China.

Quantum dots (QDs) light-emitting diodes (QLEDs) are gaining significant interest for the next generation of display and lighting applications because of their wide color gamut, cost-effective solution processability, and good stability. The last decades have witnessed rapid advances in improving their efficiency and lifetime. So far, among the three primary colors of QLEDs devices, the performance of blue QLEDs is considerably inferior to that of green and red ones including Cd-based and Cd-free devices, which is a key bottleneck hindering QLEDs' application.

View Article and Find Full Text PDF

Sensitive "On-Off" Fluorescent Sensor From N-Doped Carbon Dots for Fe Detection and Anticounterfeiting Applications.

Luminescence

December 2024

Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China.

Herein, a kind of N-doped fluorescent carbon dots (N-CDs) were prepared by using melamine and carboxymethyl cellulose (CMC) as precursors through a straightforward hydrothermal method. The designed sensor displayed a uniform nanoscale distribution, excellent hydrophilicity, and strong fluorescence emission with a fluorescence quantum yield of 37.98%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!