Mitochondria are dynamic organelles in cellular metabolism and physiology. Mitochondrial DNA (mtDNA) mutations are associated with a broad spectrum of clinical abnormalities. However, mechanisms underlying mtDNA mutations regulate intracellular signaling related to the mitochondrial and cellular integrity are less explored. Here, we demonstrated that mt-tRNA 4435A>G mutation-induced nucleotide modification deficiency dysregulated the expression of nuclear genes involved in cytosolic proteins involved in oxidative phosphorylation system (OXPHOS) and impaired the assemble and integrity of OXPHOS complexes. These dysfunctions caused mitochondrial dynamic imbalance, thereby increasing fission and decreasing fusion. Excessive fission impaired the process of autophagy including initiation phase, formation, and maturation of autophagosome. Strikingly, the m.4435A>G mutation upregulated the PARKIN dependent mitophagy pathways but downregulated the ubiquitination-independent mitophagy. These alterations promoted intrinsic apoptotic process for the removal of damaged cells. Our findings provide new insights into mechanism underlying deficient tRNA posttranscription modification regulated intracellular signaling related to the mitochondrial and cellular integrity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838789 | PMC |
http://dx.doi.org/10.1016/j.isci.2024.108883 | DOI Listing |
Commun Biol
January 2025
Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
RNA helicase DEAD-box helicase 1 (DDX1) forms a complex with the RNA ligase 2´,3´-cyclic phosphate and 5´-OH ligase (RTCB), which plays a vital role in non-spliceosomal splicing of tRNA and X-box binding protein 1 (XBP1) mRNA. However, the importance of DDX1 in non-spliceosomal splicing has not been clarified. To analyze the functions of DDX1 in mammalian cells, we generated DDX1 cKO cells from the polyploid human U2OS cell line and found that splicing of intron-containing tRNAs was significantly disturbed in DDX1-deficient cells, whereas endoplasmic reticulum (ER) stress-induced splicing of XBP1 mRNA was unaffected.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.
The trans-translation system, mediated by transfer-messenger RNA (tmRNA, encoded by the gene) and its partner protein SmpB, helps to release ribosomes stalled on defective mRNA and targets incomplete protein products for hydrolysis. Knocking out the and genes in various pathogens leads to different phenotypic changes, indicating that they have both cooperative and independent functionalities. This study aimed to clarify the functional relationships between tmRNA and SmpB in a pathogen that poses threats in aquaculture and human health.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, USA. Electronic address:
The tRNA methyltransferase 1 (TRMT1) enzyme catalyzes the N2,N2-dimethylguanosine (m2,2G) modification in tRNAs. Intriguingly, vertebrates encode an additional tRNA methyltransferase 1-like (TRMT1L) paralog. Here, we use a comprehensive tRNA sequencing approach to decipher targets of human TRMT1 and TRMT1L.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Department of Clinical Laboratory, The Third Medical Center of Chinese PLA General Hospital, Beijing, Beijing, China
Background: Immunotherapy that targets immune checkpoints has achieved revolutionary success, but its application in solid tumors remains limited, highlighting the need for reliable enhancement of the efficacy of immunotherapy. Golgi protein 73 (GP73), a Golgi membrane protein, has been implicated in various cellular processes, including immune regulation. Recent studies suggested that GP73 may play a role in modulating the immune response in patients with cancer.
View Article and Find Full Text PDFAm J Hum Genet
January 2025
Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; Center for Rare Disease, University of Tübingen, 72076 Tübingen, Germany; Genomics for Health in Africa (GHA), Africa-Europe Cluster of Research Excellence (CoRE).
Inborn errors of selenoprotein expression arise from deleterious variants in genes encoding selenoproteins or selenoprotein biosynthetic factors, some of which are associated with neurodegenerative disorders. This study shows that bi-allelic selenocysteine tRNA-specific eukaryotic elongation factor (EEFSEC) variants cause selenoprotein deficiency, leading to progressive neurodegeneration. EEFSEC deficiency, an autosomal recessive disorder, manifests with global developmental delay, progressive spasticity, ataxia, and seizures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!