Energy-efficient sol-gel synthesis was achieved through the microwave assisted self-combustion route to produce hexagonal Tungsten oxide semiconductor (WO). The photocatalytic activity was enhanced by doping Cobalt (Co) into the crystalline structure of the nanoparticle, which were subsequently sintered at 400 °C for an hour. The structural and morphological properties of the Co-doped WO were revealed using X-ray diffraction (XRD) characterization. The nanoparticles exhibited an amorphous structure before annealing, due to the short heating time during combustion synthesis. Sintering the nanoparticle transformed the nanoparticle from a monoclinic phase to orthorhombic phase structure. Additional analysis techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectrum analysis (EDS). To assess the photocatalytic performance of these particles, Acid Blue 74 (AB 74) was employed in photodegradation experiments under UV light irradiation within a semi-continuous reactor. The photodegradation of dye molecules was evaluated utilizing a UV-Vis spectrophotometer, and the mineralization efficiency of the dye was determined through total organic carbon analysis (TOC). The results indicated that the dimension of the synthesized nano catalyst fell within the range of 70-120 nm, and it exhibited the ability to completely degrade a solution with an initial dye concentration of 20 ppm within 60 min. Various parameters affecting the photocatalytic reaction, including the photocatalyst dosage, initial dye concentration, pH and temperature of the dye solution were also investigated. The experiments were designed using Response surface methodology (RSM), through which a mathematical model for the dye removal process was developed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10839801PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e24789DOI Listing

Publication Analysis

Top Keywords

acid blue
8
response surface
8
surface methodology
8
electron microscopy
8
initial dye
8
dye concentration
8
dye
6
photocatalytic
4
photocatalytic degradation
4
degradation acid
4

Similar Publications

A Magnetic Photocatalytic Composite Derived from Waste Rice Noodle and Red Mud.

Nanomaterials (Basel)

December 2024

College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China.

This study is the first to convert two waste materials, waste rice noodles (WRN) and red mud (RM), into a low-cost, high-value magnetic photocatalytic composite. WRN was processed via a hydrothermal method to produce a solution containing carbon quantum dots (CQDs). Simultaneously, RM was dissolved in acid to form a Fe ion-rich solution, which was subsequently mixed with the CQDs solution and underwent hydrothermal treatment.

View Article and Find Full Text PDF

Prussian blue nanoparticles (PBNPs) have been identified as a promising candidate for biomimetic peroxidase (POD)-like activity, specifically due to the metal centres (Fe/Fe) of Prussian blue (PB), which have the potential to function as catalytically active centres. The decoration of PBNPs with desired functional polymers (such as amino- or carboxylate-based) primarily facilitates the subsequent linkage of biomolecules to the nanoparticles for their use in biosensor applications. Thus, the elucidation of the catalytic POD mimicry of these systems is of significant scientific interest but has not been investigated in depth yet.

View Article and Find Full Text PDF

Purpose: Although the mechanism underlying interstitial cystitis/bladder pain syndrome (IC/BPS) remains unclear, oxidative stress is suggested to be implicated in IC/BPS development. Sea buckthorn (SB; L.) contains several compounds with antioxidant properties.

View Article and Find Full Text PDF

On-site visual quantification of alkaline phosphatase activity in cells using a smartphone-based approach.

Anal Chim Acta

January 2025

Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China.

Alkaline phosphatase (ALP) is a critical biomarker associated with various physiological and pathological processes, making its detection essential for disease diagnosis and biomedical research. In this study, we developed a novel, simple, and portable visual quantification method for ALP activity in cells using an efficient CuZnS nanomaterial with peroxidase-like properties, integrated into a smartphone-based platform for enhanced usability. The CuZnS nanomaterial catalyzes the breakdown of H₂O₂, generating ·OH radicals that oxidize the colorless substrate TMB into blue oxTMB, which is subsequently reduced back to TMB by ascorbic acid (AA).

View Article and Find Full Text PDF

Wood membrane: A sustainable electrochemical platform for enzyme-free and pretreatment-free monitoring uric acid in bodily fluids.

Anal Chim Acta

January 2025

School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China. Electronic address:

The detection of biomarkers is crucial for assessing disease status and progression. Uric acid (UA), a common biomarker in body fluids, plays an important role in the diagnosis and monitoring of conditions such as hyperuricemia, chronic kidney disease, and cardiovascular disease. However, the low concentration of UA in non-invasive body fluids, combined with numerous interfering substances, makes its detection challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!