Human body is highly sensitive and repairing often incurs pain and expenses. Strength of the materials degraded by poor joint (either weld or link). New material technology is proposed many biomaterials for repairing bone and tissue and also many bio-implantation applications. Especially bioactive material like bioactive glass is used for biomedical applications for replacement and repairing organs in human body. This research work focuses on suggesting material of S53P4 bioactive glass Nano-coated Zirconium dioxide for manufacturing artificial knee implant for fixing in human body. The substrate of Zirconium dioxide is Nano-coated with S53P4 bioactive glass by means of laser cladding process. The laser cladding process parameters were optimized by Taguchi method to enhance mechanical properties like compressive strength, wear resistance and microhardness of Zirconium dioxide implant material. The key parameters like Laser Power (1 kW, 2 kW, 3 kW and 4 kW), beam diameter (2 mm, 3 mm, 4 mm and 5 mm), powder feed rate (10 g/min, 15 g/min, 20 g/min and 25 g/min) and scanning speed (3 mm/s, 4 mm/s, 5 mm/s and 6 mm/s) were considered. The optimal parameters result the higher compressive strength and microhardness are obtained as 373 MPa and 898.37 HV0.2 and minimum wear volume is attained as 0.148 mm in the Nano-coated implant material.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10839605 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e25277 | DOI Listing |
J Mater Sci Mater Med
January 2025
Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland.
Macrophage metabolism is closely linked to their phenotype and function, which is why there is growing interest in studying the metabolic reprogramming of macrophages. Bioactive glass (BG) S53P4 is a bioactive material used especially in bone applications. Additionally, BG S53P4 has been shown to affect macrophages, but the mechanisms through which the possible immunomodulatory effects are conveyed remain unclear.
View Article and Find Full Text PDFJ Funct Biomater
January 2025
Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea.
To overcome limitations of dentin bonding due to collagen degradation at a bonded interface, incorporating bioactive glass (BAG) into dentin adhesives has been proposed to enhance remineralization and improve bonding durability. This study evaluated sol-gel-derived BAGs (BAG79, BAG87, BAG91, and BAG79F) and conventional melt-quenched BAG (BAG45) incorporated into dentin adhesive to assess their remineralization and mechanical properties. The BAGs were characterized by using field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy for surface morphology.
View Article and Find Full Text PDFDent J (Basel)
December 2024
Prosthetic Dentistry Discipline, Department 4-Prosthodontics and Dental Materials, Faculty of Dental Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.
Air particle abrasion (APA) is a common surface preparation method in dentistry, particularly for improving bond strength to dentin. This review evaluates the influence of APA on dentin adhesion. : A systematic literature search from 2018 to 2023 was conducted according to PRISMA-ScR guidelines.
View Article and Find Full Text PDFBioengineering (Basel)
January 2025
CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 4 Allée Emile Monso, BP44362, CEDEX 4, 31030 Toulouse, France.
Bone is a natural mineral-organic nanocomposite protecting internal organs and allowing mobility. Through the ages, numerous strategies have been developed for repairing bone defects and fixing fractures. Several generations of bone repair biomaterials have been proposed, either based on metals, ceramics, glasses, or polymers, depending on the clinical need, the maturity of technologies, and knowledge of the natural constitution of the bone tissue to be repaired.
View Article and Find Full Text PDFRegen Biomater
December 2024
Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, P. R. China.
Osteoarthritis (OA) is a frequent chronic illness in orthopedics that poses a major hazard to patient health. cell therapy is emerging as a therapeutic option, but its efficacy is influenced by both the inflammatory milieu and the amount of stem cells, limiting its use. In this study, we designed a novel injectable porous microsphere (PM) based on microfluidic technology that can support mesenchymal stem cells (MSCs) therapy by combining polylactic-glycolic acid copolymer, kartogenin, polydopamine, stromal cell-derived factor-1, and copper-doped bioactive glass (CuBG).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!