Objective: This study trains a U-shaped fully convolutional neural network (U-Net) model based on peripheral contour measures to achieve rapid, accurate, automated identification and segmentation of periprostatic adipose tissue (PPAT).
Methods: Currently, no studies are using deep learning methods to discriminate and segment periprostatic adipose tissue. This paper proposes a novel and modified, U-shaped convolutional neural network contour control points on a small number of datasets of MRI T2W images of PPAT combined with its gradient images as a feature learning method to reduce feature ambiguity caused by the differences in PPAT contours of different patients. This paper adopts a supervised learning method on the labeled dataset, combining the probability and spatial distribution of control points, and proposes a weighted loss function to optimize the neural network's convergence speed and detection performance. Based on high-precision detection of control points, this paper uses a convex curve fitting to obtain the final PPAT contour. The imaging segmentation results were compared with those of a fully convolutional network (FCN), U-Net, and semantic segmentation convolutional network (SegNet) on three evaluation metrics: Dice similarity coefficient (DSC), Hausdorff distance (HD), and intersection over union ratio (IoU).
Results: Cropped images with a 270 × 270-pixel matrix had DSC, HD, and IoU values of 70.1%, 27 mm, and 56.1%, respectively; downscaled images with a 256 × 256-pixel matrix had 68.7%, 26.7 mm, and 54.1%. A U-Net network based on peripheral contour characteristics predicted the complete periprostatic adipose tissue contours on T2W images at different levels. FCN, U-Net, and SegNet could not completely predict them.
Conclusion: This U-Net convolutional neural network based on peripheral contour features can identify and segment periprostatic adipose tissue quite well. Cropped images with a 270 × 270-pixel matrix are more appropriate for use with the U-Net convolutional neural network based on contour features; reducing the resolution of the original image will lower the accuracy of the U-Net convolutional neural network. FCN and SegNet are not appropriate for identifying PPAT on T2 sequence MR images. Our method can automatically segment PPAT rapidly and accurately, laying a foundation for PPAT image analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10839980 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e25030 | DOI Listing |
Current neural network models of primate vision focus on replicating overall levels of behavioral accuracy, often neglecting perceptual decisions' rich, dynamic nature. Here, we introduce a novel computational framework to model the dynamics of human behavioral choices by learning to align the temporal dynamics of a recurrent neural network (RNN) to human reaction times (RTs). We describe an approximation that allows us to constrain the number of time steps an RNN takes to solve a task with human RTs.
View Article and Find Full Text PDFGiant cell arteritis (GCA), a systemic vasculitis affecting large and medium-sized arteries, poses significant diagnostic and management challenges, particularly in preventing irreversible complications like vision loss. Recent advancements in artificial intelligence (AI) technologies, including machine learning (ML) and deep learning (DL), offer promising solutions to enhance diagnostic accuracy and optimize treatment strategies for GCA. This systematic review, conducted according to the PRISMA 2020 guidelines, synthesizes existing literature on AI applications in GCA care, with a focus on diagnostic accuracy, treatment outcomes, and predictive modeling.
View Article and Find Full Text PDFFront Bioeng Biotechnol
December 2024
Department of Rehabilitation Medicine, University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
Introduction: Parkinson's disease (PD) is characterized by muscle stiffness, bradykinesia, and balance disorders, significantly impairing the quality of life for affected patients. While motion pose estimation and gait analysis can aid in early diagnosis and timely intervention, clinical practice currently lacks objective and accurate tools for gait analysis.
Methods: This study proposes a multi-level 3D pose estimation framework for PD patients, integrating monocular video with Transformer and Graph Convolutional Network (GCN) techniques.
Machine learning approaches including deep learning models have shown promising performance in the automatic detection of Parkinson's disease. These approaches rely on different types of data with voice recordings being the most used due to the convenient and non-invasive nature of data acquisition. Our group has successfully developed a novel approach that uses convolutional neural network with transfer learning to analyze spectrogram images of the sustained vowel /a/ to identify people with Parkinson's disease.
View Article and Find Full Text PDFDespite the sequencing revolution, large swaths of the genomes sequenced to date lack any information about the arrangement of transcription factor binding sites on regulatory DNA. Massively Parallel Reporter Assays (MPRAs) have the potential to dramatically accelerate our genomic annotations by making it possible to measure the gene expression levels driven by thousands of mutational variants of a regulatory region. However, the interpretation of such data often assumes that each base pair in a regulatory sequence contributes independently to gene expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!